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Abstract: Climate change has intensified droughts, severely impacting crops like oats and highlighting
the need for effective adaptation strategies. In this context, the implementation of IoT-based climate
control systems in greenhouses emerges as a promising solution for optimizing microclimates. These
systems allow for the precise monitoring and adjustment of critical variables such as temperature,
humidity, vapor pressure deficit (VPD), and photosynthetically active radiation (PAR), ensuring
optimal conditions for crop growth. During the experiment, the average daytime temperature was
22.6 ◦C and the nighttime temperature was 15.7 ◦C. The average relative humidity was 60%, with
a VPD of 0.46 kPa during the day and 1.26 kPa at night, while the PAR reached an average of
267 µmol m−2 s−1. Additionally, the use of high-throughput gravimetric phenotyping platforms
enabled precise data collection on the plant–soil–atmosphere relationship, providing exhaustive
control over water balance and irrigation. This facilitated the evaluation of the physiological response
of plants to abiotic stress. Inoculation with microbial consortia (PGPB) was used as a tool to mitigate
water stress. In this 69-day study, irrigation was suspended in specific treatments to simulate
drought, and it was observed that inoculated plants maintained chlorophyll b and carotenoid levels
akin to those of irrigated plants, indicating greater tolerance to water deficit. These plants also
exhibited greater efficiency in dissipating light energy and rapid recovery after rehydration. The
results underscore the potential of combining IoT monitoring technologies, advanced phenotyping
platforms, and microbial consortia to enhance crop resilience to climate change.

Keywords: big data; gravimetric lysimeters; greenhouse microclimate; plant growth-promoting
bacteria; sustainable agriculture; water resource management

1. Introduction

The gradual rise in the Earth’s average temperature, driven by anthropogenic climate
change, is causing significant alterations in global climate patterns. These changes are
characterized by more frequent and intense climate variability, extreme seasonal tempera-
tures, and an increase in the intensity of tropical storms [1–3]. Additionally, precipitation
patterns are becoming more erratic and unpredictable, both in terms of timing and spatial
distribution [4]. These shifts are leading to prolonged droughts, and when combined with
high temperatures, they place substantial stress on a wide range of crops [5]. This stress
severely impacts agricultural productivity, reducing plants’ ability to grow and produce
efficiently [6].

This type of abiotic stress can lead to crop production losses ranging from 50% to 70%
globally [7]. Drought’s impact on plants is evident at the morphological, physiological,
and biochemical levels, manifesting in reduced growth, impaired root development, and
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alterations in photosynthesis and transpiration processes [8]. Additionally, drought stress
can compromise the integrity of cell membranes, disrupt protein synthesis, and alter
hormonal balances, resulting in overall declines in plant health and productivity [9]. In
cereals such as forage oats (Avena sativa), drought can sharply reduce biomass production,
flower fertility, grain filling, and photosynthetic rates [10]. Moreover, drought can degrade
forage quality by impacting its nutritional content and digestibility while also stunting
root growth, thus limiting the plant’s capacity to absorb water and nutrients [11]. These
combined effects diminish water use efficiency and reduce the plant’s resilience to adverse
environmental conditions.

To tackle these challenges, the development of validated mitigation strategies through
the use of advanced technologies is essential [12]. In crop-focused experimental green-
houses, the integration of Internet of Things (IoT) technologies for climate monitoring and
control offers a promising approach [13,14]. These technologies enable accurate, real-time
monitoring and management of environmental conditions, significantly improving water
use efficiency and optimizing growth conditions [15]. Furthermore, IoT technology plays
a pivotal role in greenhouse agriculture by integrating various advanced technologies,
including smart machinery, actuators, sensors, phenotyping platforms, big data analytics,
artificial intelligence, and satellite systems. This technological convergence enables pre-
cise monitoring and control of environmental parameters, optimizing crop growth and
enhancing resource management efficiency [16,17].

In greenhouse soilless cucumber cultivation, the implementation of an IoT platform
led to an increase in crop yield and quality, alongside a 28% improvement in water use
efficiency and a reduction in energy consumption [17]. Similarly, an experimental system
in a small-scale greenhouse demonstrated cost-effectiveness by incorporating photovoltaic
panels and batteries, reducing operational costs while ensuring functionality during night-
time and cloudy conditions [18]. These automated systems monitor variables such as
temperature, humidity, and light, adjusting environmental conditions to optimize plant
growth. Furthermore, drip irrigation is managed automatically based on soil moisture
levels, further enhancing precision and water use efficiency [19].

Another noteworthy example involves the use of customized wireless sensors to evalu-
ate microclimates in tropical greenhouses. These studies validated key parameters, such as
vapor pressure deficit, which reached a maximum of 5.1 kPa in polycarbonate greenhouses
and 3.81 kPa in mesh-covered greenhouses, optimizing conditions for tomato growth [20].
Additionally, real-time data collection through IoT systems enabled the automatic activa-
tion of fog-based cooling systems when temperatures exceeded 30 ◦C or humidity dropped
below 80%, achieving a temperature decrease of 6.25 ◦C and a 28.06% increase in relative
humidity [21]. This technology has also improved microclimate management through the
integration of Zigbee and LoRa wireless communication systems, which are well-suited for
both short- and long-range greenhouse applications [22]. These advancements contribute
to optimizing agricultural yield while reducing energy consumption.

In the transition from “Agriculture 1.0” to “Agriculture 4.0,” phenotyping has pro-
gressed from manual measurements using rulers and basic instruments to advanced,
multi-scale, high-precision, and high throughput monitoring modes [23]. Gravimetric
high-throughput phenotyping platforms are transforming agricultural research by provid-
ing accurate assessments of crop phenotypic traits [24,25]. These platforms incorporate
sophisticated weighing and sensing technologies to accurately measure plant water up-
take and loss, enabling detailed analysis of water use efficiency and responses to water
stress. Equipped with automated data acquisition and analysis systems, they continuously
monitor key parameters such as biomass, transpiration rate, and water content in both
soil and plants [26,27]. By deploying these tools in greenhouses, researchers can monitor
the real-time effects of different environmental conditions and management strategies,
promoting the development of more resilient, water-efficient crops and optimizing both
yield and sustainability in water-stressed environments [28].
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One of the key platforms in high-throughput phenotyping is the PlantArray by Plant-
Ditech, which has proven to be an essential tool for the real-time monitoring of plant
physiological responses under various environmental stress conditions. For instance, in a
study by Illouz-Eliaz et al. [29], the platform was used to evaluate how tomato plants with
mutations in gibberellin (GA) receptors exhibited improved water retention and reduced
transpiration rates during drought stress. PlantArray enabled the detailed monitoring of
the plants’ water dynamics. Similarly, Sacco Botto et al. [30] used phenotyping platforms
to show how tomato plants infected with begomovirus demonstrated increased drought
stress tolerance, using recovery times and responses to water stress as key metrics. In Uni
et al. [31], PlantArray tracked the water balance in Acacia species, revealing specific stomatal
responses under controlled vapor pressure deficit (VPD) conditions, providing essential
insights for species-specific water management. Additionally, Jaramillo Roman et al. [32]
used the platform to evaluate salt tolerance in quinoa varieties, measuring stomatal con-
ductance and transpiration across different saline concentrations. The phenotypic data
enabled the identification of “conservative” and “acquisitive” water use strategies, which
were crucial for understanding salt stress tolerance. When combined with mechanistic
models such as the LINTUL crop model, these data provided valuable insights into stress
management and potential breeding targets for quinoa under saline conditions.

Plant growth-promoting bacteria (PGPB) represent a promising biotechnological tool
mitigating water stress in crops [33]. These beneficial bacteria, present in the rhizosphere
and endosphere of plants, enhance plant resilience to adverse conditions such as drought
by promoting root growth and health [34]. PGPB can increase the availability of essen-
tial nutrients, produce phytohormones that stimulate plant growth, and improve plants’
ability to absorb water [35,36]. Additionally, these bacteria can induce the production of
osmoprotective compounds in plants, allowing them to maintain cellular function and
reduce the negative impact of water stress [37]. In research greenhouses, the application of
PGPB enables the evaluation of their efficacy under controlled conditions, yielding valuable
data on how these bacteria enhance drought tolerance in crops of agricultural significance.
Integrating PGPB with advanced climate monitoring and control technologies optimizes
water management, enhancing both the sustainability and productivity of crops under the
challenges posed by climate change scenarios [38,39].

The main objective of this article is to evaluate the integration of IoT technologies and
high-throughput gravimetric phenotyping platforms for monitoring and climate control
in greenhouses, aiming to develop tools to mitigate water stress in crops. The specific
objectives are: (1) to analyze how the implementation of IoT systems improves data
collection efficiency and optimizes growth conditions in experimental greenhouses; (2) to
use high-throughput gravimetric phenotyping platforms to accurately monitor the water
balance in the plant–soil–atmosphere system; (3) to investigate the impact of using PGPB
on the resistance of oat crops to water stress; and (4) to provide practical recommendations
for the adoption of these technologies in modern agriculture, highlighting their potential to
increase crop resilience to the adverse effects of climate change.

To address these challenges, advanced climate monitoring and control methods were
implemented. The use of Internet of Things (IoT)-based technologies enabled real-time
monitoring of environmental conditions in greenhouses, automatically adjusting key vari-
ables such as temperature, humidity, vapor pressure deficit (VPD), and photosynthetically
active radiation (PAR). Additionally, high-throughput gravimetric phenotyping platforms
were employed to accurately and continuously measure the water balance in plants, al-
lowing for a detailed assessment of plant physiological responses to water stress. These
approaches were complemented by rigorous statistical analyses to validate the results,
processed using tools such as Excel and the R programming language, ensuring a robust
and reliable interpretation of the data. The novelty of this study lies in the integration
of these advanced technologies, applied to oat cultivation under water stress conditions
in Colombian greenhouses. This combination not only allowed for precise microclimate
monitoring and a comprehensive evaluation of plant physiological responses, but also
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introduced the use of PGPB consortia as a biotechnological tool to mitigate water stress. The
main contribution of this work is the simultaneous implementation of these technological
and biotechnological tools in a controlled experiment, providing comprehensive data to
optimize water management and evaluate the effectiveness of microbial consortia, which
has not been explored as thoroughly in this context.

The remainder of this article is structured as follows: Section 2 describes the materials
and methods used in the experimental setup, including the implementation of IoT-based
climate control systems, gravimetric phenotyping platforms, and microbial consortium
inoculation. Section 3 presents and discusses the results, offering detailed analyses of
environmental data, plant physiological responses, and the efficacy of PGPB consortia
under drought stress conditions. This section also includes a discussion of the implications
of these results, comparing them with previous studies and evaluating their significance
for improving crop resilience. Section 4 outlines practical applications of the study’s
relevant findings. Finally, Section 5 provides conclusions and practical recommendations
for the adoption of these technologies in modern agriculture, along with suggestions for
future research.

2. Materials and Methods

The methodology of this study was designed to evaluate the impact of advanced
technologies, such as high-throughput gravimetric phenotyping platforms and IoT-based
climate control systems, on the physiological response of oat crops under water stress.
Experimental greenhouses were employed, where key variables such as temperature,
humidity, and vapor pressure deficit (VPD) were monitored and adjusted to maintain
an optimal microclimate for crop growth. Additionally, PGPB consortia were integrated
to investigate their capacity to mitigate the effects of water stress. The data collection
tools included automated climate monitoring systems, rigorous statistical analyses, and
mechanistic models to evaluate plant responses to stress, ensuring a robust and reliable
interpretation of the results.

2.1. Experimental Environment and Procedure
2.1.1. Prototype Greenhouse

The experiment was carried out at the Tibaitatá Research Center of the Colombian
Agricultural Research Corporation—AGROSAVIA located in Mosquera Cundinamarca at
the geographical coordinates, latitude, 4◦41′43.6.6′′ N, longitude, 74◦12′19.9′′ W; and at an
altitude of 2545 m above sea level.

A 100 m2 Venlo-type greenhouse was used, measuring 10 m in both width and in
length. The structure has a minimum height of 2.7 m at the facades, rising to a maximum
of 5.5 m at the ridge. The roof is made of 2.5 mm thick polycarbonate panels, with a
solar radiation transmission coefficient of 87% and a diffusion rate of 90%, as specified
by the manufacturer. The lateral sides and facades are covered with translucent glass
(Figure 1). The greenhouse is also equipped with various climate control systems, which
will be discussed in subsequent sections. The floor is concrete, and inside, masonry
planting benches have been installed, each 9 m long, 1 m wide, and positioned 1.2 m above
ground level.
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Figure 1. Geometric scheme and some characteristics of the experimental greenhouse.

2.1.2. Central Controller and Sensors for Monitoring and Management

A Hotraco GC-Orion climate controller (https://www.hotraco-horti.com/en/) is
centrally located in the greenhouse module. This advanced and versatile controller man-
ages microclimate, irrigation, and fertilization management within greenhouse structures
(Figure 2). The system is designed to individually control the microclimates of up to eight
distinct compartments, making it ideal for greenhouses with complex environmental re-
quirements. This is particularly advantageous for research greenhouses, where multiple
experiments require different controlled conditions within smaller areas. The plug-and-
play installation ensures easy setup and provides detailed monitoring of the greenhouse
microclimate conditions from any location, improving both operational efficiency and crop
growth [40].

Once the central controller is installed, it is operated via computer using the Rainbow+
management software interface (https://www.hotraco-horti.com/en/), integrated into
the ORION-GC system. This software enables users to manage and visualize all relevant
greenhouse data through graphs and status diagrams. Additionally, with the use of the
SmartLink device and the remote+ application, paired with a stable internet network
connection, the ORION-GC system can be remotely controlled using a smartphone or tablet.
This provides real-time remote access to monitor and manage the greenhouse microclimate
from anywhere in the world. The climate control system is further enhanced by monitoring
and recording sensors, along with additional controllers located both inside and outside
the greenhouse. These sensors record data at one-minute intervals, with the technical
specifications summarized in Table 1.

https://www.hotraco-horti.com/en/
https://www.hotraco-horti.com/en/
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Table 1. Devices of importance for the climate control system.

Device Description Location

CAN IO

CAN IO modules allow more sensors and actuators
to be connected to the system, providing

comprehensive monitoring and control of the
greenhouse environment. The collected data are

processed by the main controller to make informed
decisions on microclimate control.

Outside of the greenhouse.

External digital weather station,
WSC11-Thies

Wind speed: thermal anemometer, measuring range:
0 to 40 ms−1, resolution: 0.1 ms−1, accuracy:

0.1 ms−1. Wind direction: thermal anemometer,
measuring range: 1 to 360◦, resolution: 1◦, accuracy:
±10◦. Solar radiation: silicium sensor, measuring

range: 1 to 1300 Wm−2, resolution: 1 Wm−2,
accuracy: ±10%.

Temperature: PT1000, measuring range: −30 to
+60 ◦C, resolution: 0.1 ◦C, accuracy: ±1 ◦C. Relative
humidity: CMOS capacitive, measuring range: 0 to

100%, resolution: 0.1%, accuracy: ±10%.

Outside of the greenhouse.
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Table 1. Cont.

Device Description Location

SENSOR BOX-ES-24VDC

It collects and transmits crucial micro-climatic data
from multiple sensors in a greenhouse, including

temperature, humidity, PAR, and CO2. Sensors are
installed in this box and the box is ventilated and

radiation-shielded.

Inside of the greenhouse.

Temperature sensor PT 1000-W. Temperature range: −50 ◦C to +100 ◦C,
resolution: 0.1 ◦C, accuracy: ±1 ◦C. Inside of the greenhouse.

Relative humidity sensor RV-A-N probe. measuring range: 0 to 100%,
resolution: 1%, accuracy: ±2%. Inside of the greenhouse.

2.1.3. Microclimate Control Actuators

The experimental greenhouse is equipped with climate control systems to maintain
optimal growing conditions, specifically for temperature and relative humidity. It features
automatic motorized vents on the sides and ridge, design to open in a butterfly style. These
vents provide a ventilation surface of 25 m2, which is equivalent to 25% of the greenhouse’s
floor area. In addition, the greenhouse is equipped with a pad cooling system and a fogger
system that releases mist at a pressure of 5 bar. Together, these systems help regulate the
daytime microclimate to create conditions ideal for the growth and development of the oat
crop (Figure 3). The technical specifications of these actuators are summarized in Table 2.
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Regarding microclimate variability and the uniformity of experimental conditions, it
is important to highlight that the small size of the greenhouse used in this study minimizes
climatic heterogeneity. Unlike larger-scale greenhouses, evaporative cooling systems such
as cooling pads demonstrate more efficient air distribution in smaller spaces, significantly
reducing temperature and humidity fluctuations. This ensures uniform environmental
conditions throughout the experiment [41,42].

Previous research on greenhouses equipped with evaporative cooling systems has
shown that optimizing the ratio between cooling pad area and airflow helps maintain
climatic homogeneity, even in arid environments. For instance, studies suggest that a
cooling pad area of 1 m2 per 20–30 m2 of greenhouse space is sufficient to ensure proper
humidification and cooling without generating significant microclimate variability. There-
fore, given the small and appropriate climate control in this experiment, the impact of
microclimatic variability is minimal, ensuring that the experimental conditions remain
homogeneous and produce reliable and valid results [43].

Table 2. Technical characteristics of climate control actuators.

Device Description Location

Extractor fans Vostermans of 95 cm diameter and flow rate of
17,300 m3 h−1, 230 V, 2.7 A and 910 rpm. Greenhouse facade.

Geared motor with chains and pins A total of 400 Nm of geared motors for
greenhouse ventilation. Greenhouse ventilation areas

Evaporative cooling pads CELdek panel—quality 5090—dimensions 9 m wide by
1.2 m high. Inside of the greenhouse.

Irrigation foggers
NETAFIM COOLNET PRO, nominal flow 5.5 L h−1 4.0
bar pressure—pressure range 3.0–5.0 bar, 4 cross nozzles

spaced at 2 m by 2 m.
Inside of the greenhouse.

2.2. High-Throughput Phenotyping Platform

The Plantarray high-throughput gravimetric phenotyping platform, developed by
the Israeli company Plant Ditech, was installed in the controlled greenhouse (review [44]).
Plantarray is an advanced gravimetric physiological phenotyping platform equipped with
multiple sensors. This system enables the rapid and precise selection of plants by providing
detailed measurements of key physiological traits that strongly correlate with field per-
formance. The main advantages of this system include its full automation, encompassing
experiment control, real-time measurements, and comprehensive data analysis. Plantarray
provides consistent, quantitative results, including measurements of the whole plant, from
root to shoots, and the surrounding environment (Figure 4). In addition, the system enables
precise monitoring of soil and water conditions, as well as the simultaneous management of
multiple treatments within the greenhouse. This system continuously evaluates the water
flow in the soil–plant–atmosphere complex for each plant, enabling a rapid assessment of
yield potential in a dynamic environment [45].

The installed Plantarray system consists of 32 weighing lysimeters, each equipped
with independent controllers for irrigation and fertilization, as well as planting containers
for the experiment’s soil or substrate. The lysimeters are connected to a pressurized irriga-
tion network, which includes a field head with a pressure gauge, pressure regulator, and
screen filter. Additionally, the lysimeters employed in this study were calibrated using a
range of calibrated weights, typically from 10 g to 10 kg, to ensure high precision in water
balance measurements. Studies using similar platforms, such as the PlantDitech PlantAr-
ray platform, have shown that lysimeter calibration protocols ensure mass measurement
accuracy with uncertainties as low as 3 to 8 g, which is critical for assessing evapotranspi-
ration and water stress [27,44]. Each lysimeter is also equipped with a data transmission
and internet cable linked to the main computer, recording gravimetric information every
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minute. Additionally, power cables send signals to irrigation controllers according to the
experimental programming.
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The system also incorporates a climate station that measures variables such as photo-
synthetically active radiation (PAR), temperature, relative humidity, and vapor pressure
deficit (VPD). The data generated by each experiment can be downloaded and analyzed in
real-time via any computer connected to the network, using Plant-DiTech’s SPAC analytics
platform (www.plant-ditech.com). This setup allows accurate and continuous monitoring
of experimental conditions, ensuring effective management and detailed analysis of each
essay. A summary of some of the key components of the Plantarray system is given in
Table 3.

Table 3. Technical characteristics of the hydraulic and electronic components of the phenotyp-
ing platform.

Device Description Location

Electric pump
Equipment to always ensure a constant supply of
water to the system. The gauge pressure must be

guaranteed to remain between 20 and 60 psi.
Irrigation power house.

Irrigation filter
Its function is to filter solid particles that may exist

in the water and prevent clogging of irrigation
controllers and emitters.

Inside of the greenhouse.

www.plant-ditech.com
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Table 3. Cont.

Device Description Location

Pressure regulator Maintains constant water pressure in the irrigation
system at 30 psi. Experimental cultivation bench.

Main valve
Controls the water supply to the irrigation system.
In case of malfunction of the irrigation system, it

should be shut off.
Experimental cultivation bench.

Plantarray controller

It collects data from the sensors and operates the
solenoid valves to form the treatment scenarios in
the Plantarray client software. This controller also

records and sends data from each
experimental unit.

Experimental cultivation bench.

Electronic weighing scales
It consists of a steel structure with a load cell,
where its function is to measure changes in

biomass and water loss.
Experimental cultivation bench.

Planting platform

It contains the Plantarray, a water reservoir, and a
scale assembly. The platform is connected to the

Plantarray controller and contains the drippers for
irrigation supply.

Experimental cultivation bench.

WatchDog 2475 Plant Growth Station

PAR: measuring range: 0 to 3000 µmolm−2 s−1,
accuracy: ±5%. Temperature: measuring range:
−40 to +125 ◦C, accuracy: ±0.4 ◦C. Relative

humidity: measuring range: 0 to 100%, accuracy:
±2%. The VPD (kPa) is calculated as a function of

the other parameters (temperature and
relative humidity).

Experimental cultivation bench.

2.2.1. Plant Material

Seeds of high-Andean forage oat (Avena sativa L.) were planted in peat and maintained
for 20 days until they reached an average size of 10 cm and five true leaves. Following
this step, the seedlings were transplanted into Plantarray phenotyping platform pots
containing a mixture of soil and rice husk (3:1) (Figure 5). Soil properties were as follows:
pH 6.39, electrical conductivity (0.24 dS m−1), cation exchange capacity (9.60 cmol(+) kg−1),
organic matter (19.9 g kg−1), organic carbon (11.5 g kg−1), P (205.247 mg kg−1), S (14.15 mg
kg−1), B (0.57 mg kg−1), Ca (5.57 mg kg−1), Mg (1.90 mg kg−1), K (0.36 cmol(+) kg−1), Na
(0.05 cmol(+) kg−1), Fe (149.88 mg kg−1), Mn (10.18 mg kg−1), Zn (8.82 mg kg−1), and Cu
(6.04 mg kg−1). Once in the pot, foliar fertilizer (Wuxal red top and Wuxal black top) was
applied every five days for six weeks to each plant, using a concentration of 1 cm3 L−1.

2.2.2. Experimental Design

A complete factorial design was established with two factors: water deficit (stress)
and inoculation with a microbial consortium (PGPB) made up of the species Azospirillum
brasilense (strain D7), Herbaspirillum sp. (strain AP21), and Rhizobium leguminosarum (strain
T88). This consortium has demonstrated significant efficacy in mitigating abiotic stress in
forage and horticultural crops [46]. Thus, four treatments were established, each duplicated
over time, with eight replicates (P-plants) per treatment. The experimental design included
the following treatments: (1) irrigated control—Irrigation, (2) water deficit control—Stress,
(3) inoculated irrigated—I + PGPB, and 4) inoculated Stress—S + PGPB. PGPB inoculation
was performed five days before initiating the drought treatments (Figure 6).

The trial followed a completely randomized block design, alternating treatments of
water stress, irrigation, and their combination with IPBG. This arrangement ensures that
differences between treatments can be efficiently and comparatively evaluated, minimizing
any bias caused by potential environmental gradients within the greenhouse. The linear



AgriEngineering 2024, 6 4021

arrangement also facilitates monitoring and measurement of critical variables, ensuring
appropriate contrasts between treatments under controlled conditions.
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The Plantarray platform recorded data for 75 days, from 13 September to 27 November
2023. Initially, a five-day soil drainage test was conducted to ensure the soil drained the
applied water pulses adequately, a crucial factor for this type of study [47]. On September
19, oat seedlings were transplanted into the experimental pots. During the first phase, up to
26 October, the 32 beds were irrigated to reach the soil’s maximum water storage capacity,
applying four nightly irrigation cycles to maintain a consistent gravimetric balance.

Once the plants reached an average daily transpiration of approximately 200 mL, the
I + PGPB and S + PGPB treatments were inoculated. Seven days later, drought treatments
started, with Stress and S + PGPB plants receiving no irrigation for 15 days. Subsequently,
these plants underwent a 5-day recovery phase, with water applied to saturate the soil,
followed by a 5-day post-recovery phase. Finally, all plants were removed from the
Plantarray platform. This methodological approach follows similar protocols used in
previous studies [48,49].

2.3. Parameters Calculated with the Phenotyping Platform

The Plantarray phenotyping platform was used to calculate and record the variables
mentioned in the Table 4.

Table 4. Variables measured by the phenotyping platform.

• Variable • Units

• Daily Transpiration • (g H2O)

• Daily Volumetric Water Content • (cm3/cm3)

• Vapor Pressure Deficit (VPD) • (kPa)

• Photosynthetically Active Radiation (PAR) • (µmol·m−2·s−1)

2.4. Determination of Physiological Parameters
2.4.1. Relative Water Content and Biomass

After reaching the physiological point of drought stress and subsequent rehydration,
the relative water content (RWC; %) was measured following the method of Cortés-Patiño
et al. [34], with some modifications. Leaf segments (10 cm) were weighed for fresh mass (fw,
g) and placed in ziploc bags with water for 12 h to determine the turgid mass (tw, g). Then,
the segments were dried in an oven at 70 ◦C for 48 h to determine the dry mass (dw, g). The
RWC was calculated using the equation described by Pérez-López et al. [50] (Equation (1)).
Stem biomass, root, and total dry biomass (dry biomass; g) were determined after drying
the plants in an oven at 70 ◦C for 48 h.

Relative water content (RWC) = (
f w − dw
tw − dw

) ∗ 100 (1)

2.4.2. Stomatic Conductance and Chlorophyll Fluorescence

Stomatic conductance (gs, mmol m−2 s−1) was measured using a porometer (Decagon
Devices Inc., Pullman, WA, USA). Chlorophyll a fluorescence was measured with a modu-
lated fluorometer (MINIPAM-II, Walz, Effeltrich, Germany). The light pulse was applied
to leaves, previously adapted to darkness for 20 min, for 1 s at an intensity of 3500 mmol
photonsm−2 s−1. Measurements were taken between 8:00 am and 10:00 am.

2.4.3. Quantification of Photosynthetic Pigments

The quantification of chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoid
content (x + c) (mg cm−2), was performed on three-leaf disks per plant in dimethyl sulfoxide
(DMSO) [51]. The leaf disks were placed in 1 mL of DMSO and heated in a water bath at
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95 ◦C for 1 h. The extract was then read at 480, 649, and 665 nm using a microplate reader.
The pigment content was determined using DMSO equations established by Wellburn [51]:

Chl a = (12.47 A 665.1 − 3.62 A649.1) (2)

Chl b = 25.06 A649.1 − 6.5 A655.1 (3)

x + c = (1000 A480 − 1.29Chl a − 53.78Chl b)/220 (4)

2.5. Statistical Analysis

Data were analyzed using Prism software (GraphPad, Dotmatics, San Diego, CA, USA)
and presented as the mean ± 95% confidence intervals (CI) of eight biological replicates.
The normality of residuals was assessed with the Shapiro–Wilk test and visually inspected
via Q-Q plots. Homoscedasticity was evaluated using Bartlett’s test. When residuals
were not normally distributed or variances were not homogeneous (ZAadwvDS < 0.05),
the Kruskal–Wallis test was used. If data were normally distributed and variances were
homogeneous (p > 0.05), ANOVA was applied to determine significant differences between
treatments, followed by Tukey’s test (α = 0.05) for post hoc multiple comparisons. Outliers
were identified using the Robust Regression and Outlier Removal (ROUT) method, with a
False Discovery Rate (FDR) set at Q = 1%. Different letters indicate significant differences
among samples. For significance between two groups, a two-sided Student’s t-test was
used. Significance levels were denoted as * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001. All
significance analyses were conducted with a 95% confidence interval.

3. Results and Discussion
3.1. External Climatic Conditions

The following is a complete analysis of the temporal behavior of temperature, relative
humidity, solar radiation, and wind speed at the experimental site, since these factors
directly influence the microclimate generated inside the greenhouses [52,53]. Likewise,
crop performance and microclimate control strategies implemented in greenhouses depend
to a large extent on these external climatic conditions [54]. This analysis is essential to
optimize climate management and improve the energy and environmental efficiency of
climate strategies and other factors affecting crop growth and productivity [55,56].

The temporal behavior of the integrated outdoor ambient temperature data set is
shown in Figure 7. It is important to note that, due to failures in the electrical infrastructure,
there was no internet connection in the greenhouse from 23 September to 27 September,
resulting in a data gap. However, the amount of data collected during this measurement
period with the recording system is significantly higher than that provided by the public
climatology network, which only reports daily averages from a location far from the
experimental trial and with delayed reporting. Therefore, it is evident that these IoT
stations monitor and record data specific to conditions near the environment of interest,
operating autonomously and offering high efficiency in data recording [57].

The data obtained showed clear differences between daytime and nighttime tempera-
tures. The average temperature during the day was 19.4 ± 2.58 ◦C, while during the night
the average was 11.8 ± 1.79 ◦C. These results indicated that the temperature was generally
higher and shows greater variability during the day compared to the night (Figure 7). Ad-
ditionally, the maximum temperature during the day reached 27.9 ◦C, while the minimum
dropped to 10 ◦C. On the other hand, during the night, the maximum temperature was
19.7 ◦C and the minimum was 5.5 ◦C. These differences between daytime and nighttime
temperatures suggest a large thermal amplitude cycle, which may have important implica-
tions for greenhouse climate management and other controlled environments, as well as in
the development of pests and diseases [58–60].
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Regarding relative humidity, the trend observed during the measurement period is
illustrated in Figure 8. The relative humidity ranged between 100% saturation during
nighttime and lower values close to 40% during the daytime. The data revealed significant
differences between day and night humidity levels, which align with previous studies con-
ducted in protected agriculture within the study area [61,62]. The average relative humidity
during the day was 67.4 ± 12.1%, while, during the night, it increased to 91.5 ± 7.28%.
Furthermore, the extreme values show that the relative humidity reached 100% during
both the day and night periods, but the minimum value was notably lower during the day
34% compared to the night 76%. This variability of humidity is influenced by temperature
fluctuations and other environmental conditions such as solar radiation [63].

Solar radiation showed a mean value of 301.8 ± 271.3 W/m2 (Figure 9). These values
indicate a high variability in daily solar radiation, which is characteristic for the climatic
conditions of the study region. On the other hand, the maximum value of solar radiation
was 1310 W/m2, while the minimum was 0 W/m2 (at night). This variability in solar
radiation influence the microclimate of greenhouses and other agricultural environments,
affecting processes such as photosynthesis and evapotranspiration [64]. Understanding
these patterns is crucial to optimize microclimate management and improve the energy
efficiency of climate control strategies [14,65].
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Regarding wind speed, the time curve shows that there is a high concentration of
data between 0 and 1 ms−1 (Figure 10), which is a characteristic behavior of the Bogota
savanna [66]. On the other hand, the data showed relevant differences in wind speed
between day and night. The average wind speed during the day was 0.886 ± 0.619 m s−1,
while during the night it decreased to 0.403 ± 0.318 m s−1. Likewise, the maximum wind
speed during the day reached 5.1 m s−1, while the minimum was 0 m s−1. During the night,
the maximum wind speed recorded was 2.1 m s−1 and the minimum was 0 m s−1. The
increased intensity and variability of wind during the daytime can be attributed to climatic
factors such as the thermal dynamics of the region, changes in atmospheric pressure, and
convection flows [67]. These differences in wind speed are important for greenhouse design
and management, as wind influences the distribution of heat, moisture, and carbon dioxide
within these structures [68,69].
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All of the above highlights the importance of proper climate monitoring as it has a
significant influence on the microclimatic behavior of greenhouses and other agricultural
systems [70].

3.2. Microclimatic Conditions Inside the Greenhouse

The microclimatic conditions inside a greenhouse are crucial for plant development,
with temperature and relative humidity significantly influencing plant growth rates [71,72].
In addition, variables such as vapor pressure deficit (VPD) and photosynthetically active
radiation (PAR) play essential roles in physiological processes such as transpiration and
photosynthesis [73,74]. Therefore, it is essential to conduct a detailed analysis of the behav-
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ior of these variables inside the greenhouse used in this research to better understand their
impact on the crop and optimize the conditions for adequate plant growth in future trials.

3.2.1. Temperature

In the study, carried out in a greenhouse without night heating but equipped with
evaporative cooling and mechanical extractors during the day, some notable differences in
thermal behavior during the day and night period were evidenced (Figure 11).
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During daytime hours, the mean temperature was 22.6 ± 3.54 ◦C, reaching a max-
imum of 30 ◦C for several hours during some days (Figure 11). This maximum value
was effectively kept below the threshold due to the cooling technology, demonstrating
its effectiveness in thermal regulation. On the other hand, during the night, the average
temperature dropped to 15.7 ± 1.96 ◦C with a minimum of 11.1 ◦C, indicating that there is
heat loss inside the structure due to the thermal radiation that leaves the greenhouse to
the outside at night and cannot be retained by the polycarbonate cover [75]. These find-
ings show the need to incorporate heating systems to stabilize temperature and optimize
growing conditions in the greenhouse [14]. However, the microclimate conditions were
adapted to the requirements for the test with high-Andean oats, which were developed for
the climatic conditions of the high Andean tropics, where night temperatures can drop to
as low as 4 ◦C [76].
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3.2.2. Relative Humidity

The analysis of the relative humidity behavior inside the greenhouse reveals clear
patterns related to the day and night cycle of the Bogota Savanna (Figure 12). During the
day, the average relative humidity was 57.2 ± 12.4%, reaching a maximum of 89% and
a minimum of 28%. These values suggest considerable variability, possibly influenced
by greenhouse ventilation, and external climatic conditions such as temperature and
solar radiation [61]. In contrast, during the night, the relative humidity increased to an
average of 78.8 ± 5.15%, reflecting a maximum of 91% and a minimum of 61%. This
increase is attributed to the reduction in temperature, which generates an increase in
relative humidity in the atmosphere [77]. Understanding these patterns will be crucial for
optimizing growing conditions and effectively managing humidity control systems in the
greenhouse for future experiments.
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3.2.3. Vapor Pressure Deficit

The analysis of the behavior of the vapor pressure deficit (VPD) demonstrates how
variations in internal temperature and relative humidity conditions directly influence this
parameter, as it is highly dependent on these variables [78]. During the day, VPD presented
a mean of 1.26 ± 0.54 kPa, ranging from a maximum of 3.04 kPa to a minimum of 0.495 kPa
(Figure 13). This wide range can be attributed to the intensity of solar radiation that
influences greenhouse temperature and plant evapotranspiration. [79]. In contrast, the
average VPD at night was 0.46 ± 0.14 kPa, indicating more stable conditions due to the
absence of sunlight and a lower photosynthetic activity. The VPD ranged from 0.79 kPa
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to 0.259 kPa. These findings show that the nighttime VPD was within an adequate range,
as it never fell below 0.2 kPa, which would have increased the risk of foliage diseases [80].
During the day, the average VPD value was in the range of 1.5 kPa, a condition that is
optimal for most greenhouse-grown plants, since it promotes a moderate transpiration
rate and stomatal conductance without causing excessive water stress [81,82]. However, at
some points during the cultivation phase, the VPD reached 2.0 kPa, although it should be
noted that since this was a drought stress test, the moisture condition of the greenhouse
was low.
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3.2.4. Photosynthetically Active Radiation

Photosynthetically active radiation (PAR) covers wavelengths from 400 to 700 nm
and is crucial for photosynthesis, transforming sunlight into energy for plant growth [74].
However, the efficiency in the use of different PAR wavelengths varies due to differences in
photon absorption by photosynthetic antenna complexes and the interaction of light with
other cellular components that may reflect or absorb it [83]. The analysis of PAR showed an
average of 267 ± 276 µmol m−2 s−1, indicating a considerable variability in light intensity
throughout the day (Figure 14). Similar PAR behavior was reported for other locations
in the department of Cundinamarca [84]. The maximum value was 1788 µmol m−2 s−1,
highlighting these values at times of high light intensity, between 10:00 and around noon,
or at times of direct radiation due to clear skies, which agrees with values reported by [85].
The optimum PAR value required by plants can vary considerably depending on the type
of plant and its growth stage. Generally, most greenhouse plants thrive at PAR levels
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between 200 and 400 µmol m−2 s−1 during the active growth phase and may require up to
1050 µmol m−2 s−1 at other stages of crop development [86].

Therefore, it can be stated that the greenhouse provides adequate light conditions for
various crops. It is also important to emphasize that proper PAR management is crucial to
optimize photosynthesis and prevent stress or damage caused by excess light exposure in
plants. However, in greenhouses without artificial lighting systems, PAR management is
primarily limited to maintaining the transparency of the greenhouse canopy, by eliminating
dust and other elements that obstruct light transmission and diffusion.
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inside the greenhouse.

3.2.5. Differential Thermal Analysis

The thermal differential between the interior of the greenhouse and the external
environment showed a mean of 3.9 ◦C ± 0.9 ◦C, a maximum of 5.3 ◦C, and a minimum
of 2.0 ◦C (Figure 15). These data indicate that the greenhouse consistently maintained a
higher temperature compared to the outside, which is crucial to promote plant growth
under greenhouse conditions [87]. The greenhouse can significantly raise the internal
temperature, providing a warmer environment beneficial for plant development, especially
during cold nights [88]. Another relevant aspect regarding Colombian greenhouses is
that in this experimental greenhouse, no thermal inversion phenomenon was observed.
Therefore, there were no negative thermal differentials. This is undoubtedly influenced by
the choice of cover material, which provides greater protection against thermal radiation
during the night compared to flexible plastic covers [89].
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ment of the greenhouse.

3.3. Physiological Measurements in Plants
3.3.1. Volumetric Content, Daily Transpiration, Stomatal Conductance, and Relative Water
Content of Plants

On day 37, after transplant, the treatments I + PGPB and S + PGPB were inoculated
with PGPB consortium, consisting of Azospirillum brasilense D7, Herbaspirillum sp. AP21, and
Rhizobium leguminosarum T88. Seven days later, irrigation was suspended for the stress treat-
ments. Consequently, pots began to gradually lose their volumetric water content (VWC)
compared to irrigated treatments (Irrigation and I + PGPB) (Figure 16A). Transpiration
(Figure 16B) in the Stress and S + PGPB treatments followed the same trend as VWC, with
more fluctuations between measurements due to the variability of the greenhouse microen-
vironment. VWC and transpiration trends were also evidenced in teff and barley plants
under drought stress, monitored by a Plantarray lysimeter platform [49,90]. No differences
were observed between inoculated and non-inoculated treatments for either variable.

AgriEngineering 2024, 6, FOR PEER REVIEW  22 
 

 

 
Figure 16. The water balance parameters of oat plants with and without inoculation with a microbial 
consortium composed of A. brasilense, Herbaspirillum sp. and R. leguminosarum (PGPB), after 17 days 
of irrigation suspension (Stress), with their respective irrigated controls (Irrigation). (A) The volu-
metric water content and (B) the daily plant transpiration. 

After nine days of suspending irrigation, the stressed and inoculated plants (S + 
PGPB) reached moderate stress (Ms) as indicated by their stomatal conductance (gs) (Fig-
ure 17), with values of 142 mmol m−2s−1 compared to stressed control plants (Stress), which 
had values of 70.37 mmol m−2s−1. After five additional days, S + PGPB plants reached val-
ues such as those of the Stress treatment under severe stress (Ss). Upon hydration, all 
plants recovered their water status, as evidenced by increased transpiration (Figure 16B), 
stomatal conductance gs (Figure 17), and relative water content (Figure 18). This hydration 
process highlighted the recovery capacity of the plants treated with the microbial consor-
tium, suggesting a positive effect on the resilience to water stress. [90,91]. It has been doc-
umented that plants inoculated with PGPB show increased levels of secondary osmolytes 
(proline, trehalose, and choline), protective proteins (heat shock proteins—HSPs and late 
embryogenesis abundant proteins—LEAs), phytohormones (auxins and abscisic acid), 
and antioxidative enzymes (catalase, ascorbate peroxidase, and glutathione reductase). 
These increases enhance osmoprotective activity in cells and reduce oxidative stress 
caused by water deficiency [90,91]. Our results indicate that PGPB inoculation mitigates 
the negative effects of water deficit stress and facilitates faster and more efficient recovery, 
promoting improved plant performance under drought conditions and subsequent rehy-
dration. 

 

Figure 16. The water balance parameters of oat plants with and without inoculation with a microbial
consortium composed of A. brasilense, Herbaspirillum sp. and R. leguminosarum (PGPB), after 17 days of
irrigation suspension (Stress), with their respective irrigated controls (Irrigation). (A) The volumetric
water content and (B) the daily plant transpiration.
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After nine days of suspending irrigation, the stressed and inoculated plants (S + PGPB)
reached moderate stress (Ms) as indicated by their stomatal conductance (gs) (Figure 17),
with values of 142 mmol m−2 s−1 compared to stressed control plants (Stress), which had
values of 70.37 mmol m−2 s−1. After five additional days, S + PGPB plants reached values
such as those of the Stress treatment under severe stress (Ss). Upon hydration, all plants
recovered their water status, as evidenced by increased transpiration (Figure 16B), stomatal
conductance gs (Figure 17), and relative water content (Figure 18). This hydration process
highlighted the recovery capacity of the plants treated with the microbial consortium,
suggesting a positive effect on the resilience to water stress. [91,92]. It has been docu-
mented that plants inoculated with PGPB show increased levels of secondary osmolytes
(proline, trehalose, and choline), protective proteins (heat shock proteins—HSPs and late
embryogenesis abundant proteins—LEAs), phytohormones (auxins and abscisic acid), and
antioxidative enzymes (catalase, ascorbate peroxidase, and glutathione reductase). These
increases enhance osmoprotective activity in cells and reduce oxidative stress caused by
water deficiency [91,92]. Our results indicate that PGPB inoculation mitigates the negative
effects of water deficit stress and facilitates faster and more efficient recovery, promoting
improved plant performance under drought conditions and subsequent rehydration.
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Figure 17. The stomatal conductance of high-Andean oat plants without and with PGPB inoculation
under moderate (Ms) and severe (Ss) water deficit stress and five days after hydration (H), with their
respective irrigated controls. Data were analyzed using Tukey’s test for parametric data and the
Kruskal–Wallis test for non-parametric data. Different letters indicate significant differences between
treatments (α = 0.05).
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Figure 18. The relative water content (RWC) of high-Andean oat plants without and with PGPB
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respective irrigated controls. Asterisks indicate significant differences between treatments after a
two-sided Student’s t-test. **** p ≤ 0.0001.



AgriEngineering 2024, 6 4033

3.3.2. Biomass, Photosynthetic Pigment Content, and Chlorophyll a Fluorescence

Treatments that were inoculated exhibited greater root growth (Figure 19B), with
the irrigated and inoculated treatment (I + PGPB) having the highest total dry biomass
(Figure 19C). An increase in growth and biomass production is a response associated
with growth promotion. Azospirillum brasilense, Herbaspirillum sp., and Rhizobium legumi-
nosarum species have demonstrated their ability to produce bioactive compounds, such
as indolic compounds and exopolysaccharides, that facilitate stress tolerance and post-
stress recovery [93]. Indolic compounds increase cell division and expansion, resulting
in larger biomass production. Also, these strains have been evaluated under water stress
conditions, showing positive results in plant growth promotion and mitigation of water
deficit stress [34,94]. These results suggest that inoculation with the microbial consortium
not only favors root growth but also improves the efficiency of water and nutrient uptake,
which contributes to an increase in total biomass and even greater efficiency in the use of
fertilizers [95].
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Figure 19. Dry biomass produced by oat plants with and without inoculation with PGPB after 17 days
of irrigation suspension, with their respective irrigated controls. (A) Shoot dry biomass, (B) root dry
biomass, and (C) total dry biomass. Asterisks indicate significant differences between treatments
after a two-sided Student’s t-test. * p ≤ 0.05.

Under moderate stress (Ms), differences between irrigation treatments were observed
in the non-photochemical quantum yield—Y(NPQ) (Figure 20D). However, under severe
stress (Ss) differences were noted in all parameters between stressed and irrigated plants
(Figure 20). The increase in the quantum yield of unregulated heat dissipation (Y(NO)) un-
der severe stress indicates stress presence in plants. As stress increases, plants inefficiently
regulate energy uptake (increase in Y(NO)), leading to a decrease in non-photochemical
quantum yield (Y(NPQ)). This mechanism allows PSII to release excess energy, preventing
photodamage [96].

Notably, S + PGPB under Ss obtained similar values of electron transport—ETR and
Y(II) as the irrigated control. This suggests that PGPB inoculation may protect the PSII
reaction center, reducing the negative impact of water deficit on ETR, as supported by
previous findings [97]. Furthermore, the ability of PGPB-treated plants to maintain ETR
and Y(II) levels similar to the irrigated control indicates improved tolerance to drought
stress. This suggest that the PGPB microbial consortium enhances energy use efficiency
under severe stress conditions, maintaining more stable photosynthetic processes [98,99].

Stressed and inoculated plants (S + PGPB), under moderate stress (Ms) had chlorophyll
b and carotenoid contents similar to those of the irrigated treatments (Figure 21B,C). This
may be related to the effect of the consortium on stress mitigation in oat plants. The stress
treatment (Stress) had higher carotenoid content in Ms, indicating that high-Andean oats,
under irrigation suspension, tend to accumulate carotenoids in their leaves as a strategy to
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avoid photodamage in photosystem II (PSII). Carotenoids dissipate excess light energy and
reduce reactive oxygen species production, mitigating photoinhibition [100].
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Figure 20. The photochemical and non-photochemical quenching parameters of chlorophyll a
fluorescence of high-Andean oat plants with and without PGPB inoculation, under moderate stress
(Ms), severe stress (Ss), and after five days of hydration (H) water deficit stress, with their irrigated
controls. (A) The relative electron transfer rate (ETR); (B) the photochemical quantum yield of PSII—Y
(II); (C) the quantum yield of unregulated heat dissipation—Y (NO); (D) the non-photochemical
quantum yield—Y (NPQ). Data were analyzed using Tukey’s test for parametric data and the
Kruskal–Wallis test for non-parametric data. Different letters indicate significant differences between
treatments (α = 0.05).
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Figure 21. The content of (A) chlorophyll a, (B) chlorophyll b, and (C) carotenoids in high-Andean
oat plants inoculated and non-inoculated with the species A. brasilense, Herbaspirillum sp. and R.
leguminosarum (PGPB) under moderate water deficit stress (Ms), severe water deficit stress (Ss), and
five days after hydration (H). Compared with their respective irrigated controls. Data were analyzed
using Tukey’s test for parametric data and the Kruskal–Wallis test for non-parametric data. Different
letters indicate significant differences between treatments (α = 0.05).
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This phenomenon was evidenced in the Y(II) results (Figure 20B), where stressed
plants maintained values above 0.80 throughout the experiment, indicating the absence
of photodamage [101]. During the hydration phase, no significant differences were ob-
served between treatments, consistent with previous physiological variables, such as gs
and RWC. This suggests that the microbial consortium not only helps plants to main-
tain their pigment content under stress conditions but also contributes to rapid recovery
after hydration. Therefore, the ability to maintain high carotenoid levels and efficient
light energy dissipation may be crucial for stress tolerance and overall plant resilience to
adverse conditions.

4. Practical Applications

The findings of this study offer several practical applications that can greatly benefit
agricultural producers and promote sustainability in production systems. First, the imple-
mentation of IoT-based climate control systems in greenhouses enables the optimization of
resource use, such as water and energy, through real-time monitoring and automation of
irrigation and ventilation systems. This approach not only improves resource efficiency
use but also reduces long-term operational costs. For instance, producers can automatically
adjust temperature and humidity conditions to maximize crop growth, thereby reducing
losses due to abiotic stress.

Additionally, the use of microbial consortia such as PGPB, not only enhances crop
tolerance to drought but also decreases reliance on chemical fertilizers and pesticides.
This shift supports more sustainable agricultural practices, leading to crops that are more
resilient to climate change and fostering a more stable production system with reduced
dependence on external inputs.

Another practical application involves the use of high-throughput phenotyping plat-
forms to accurately monitor plant health and development. This capability allows for more
informed and efficient decision-making regarding necessary interventions to maximize crop
yield and quality. Furthermore, these tools facilitate the transition to precision agriculture,
where producers can optimize the use of each resource in the production process.

5. Conclusions and Recommendations

The implementation of IoT-based climate control systems in greenhouses marks a
significant advancement in modern agricultural practices. These systems enable highly
accurate monitoring and regulation of essential parameters such as temperature, humidity,
and vapor pressure deficit. By leveraging climate control actuators, these systems facilitate
precise control, recording, and optimization of the environmental conditions necessary for
crop growth, thereby enhancing resource use efficiency. Moreover, the integration of IoT
technology in greenhouse environments supports informed decision-making processes
and allows for quick adaptation to fluctuating climatic conditions. This ensures stable and
reliable microclimatic conditions, particularly crucial for applied research and experimental
trials in controlled settings.

Using high-throughput gravimetric phenotyping platforms provided absolute control
of irrigation application and accurate data recording of water balance in the plant–soil–
atmosphere system. These platforms facilitated the precise acquisition of data on water
dynamics, providing a better understanding of the effects of water stress and microbial
inoculation on oat plants.

Integrating advanced technologies such as phenotyping platforms, IoT-based climate
control systems, and biotechnological tools like microbial consortium inoculation in mod-
ern agriculture represents a crucial opportunity to enhance crop resilience to the effects of
climate change. These technologies will enable the development of strategies for efficient
and precise water resource management, optimizing plant growth and productivity. Con-
sequently, farmers can improve the sustainability of their practices, ensure more stable and
high-quality agricultural production, and mitigate the adverse impacts of climate change
on food security.
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However, one of the main limitations of this study lies in the scale of the experiment, as
it was conducted under controlled greenhouse conditions, which may not fully capture the
complexity of large-scale agricultural scenarios. Although the effects of water deficit and
inoculation with microbial consortia on oats were evaluated, the results need validation
across different crops and more variable climatic conditions to generalize the findings.
Another limitation is that the monitoring and adjustment of the microclimate were based
on IoT sensors and systems, which, despite being accurate, could be affected by technical
issues such as connectivity failures or variations in sensor accuracy over the time. Moreover,
the potential long-term effects of the continued use of microbial consortia (PGPB) on soil
properties were not thoroughly explored, which is essential for ensuring the sustainability
of this strategy in future studies.

Future work should focus on larger-scale studies under real agricultural conditions
with a greater diversity of crops and environments. Additionally, more advanced IoT
technologies could be explored, including systems with backup options for technical
failures and increased robustness in connectivity. It would also be valuable to investigate
the long-term impact of microbial consortia on soil health, as well as their effectiveness in
other crops facing different types of abiotic stress.
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