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Introduction: Soil water availability is a key factor in the growth of trees. In arid

deserts, tree growth is limited by very dry soil and atmosphere conditions. Acacia

tree species are distributed in the most arid deserts of the globe, therefore they

are well adapted to heat and long droughts. Understanding why some plants do

better than others in some environments is a key question in plant science.

Methods: Here we conducted a greenhouse experiment to continuously and

simultaneously track the whole-plant water-balance of two desert Acacia

species, in order to unravel their physiological responses to low water availability.

Results: We found that even under volumetric water content (VWC) of 5-9% in the

soil, both speciesmaintained 25%of the control plants, with a peak of canopy activity

at noon. Moreover, plants exposed to the low water availability treatment continued

growing in this period. A. tortilis applied a more opportunistic strategy than A.

raddiana, and showed stomatal responses at a lower VWC (9.8% vs. 13.1%, t4= -4.23,

p = 0.006), 2.2-fold higher growth, and faster recovery from drought stress.

Discussion: Although the experiment was done in milder VPD (~3 kPa) compared

to the natural conditions in the field (~5 kPa), the different physiological

responses to drought between the two species might explain their different

topographic distributions. A. tortilis is more abundant in elevated locations with

larger fluctuations in water availability while A. raddiana is more abundant in the

main channels with higher and less fluctuating water availability. This work shows

a unique and non-trivial water-spending strategy in two Acacia species adapted

to hyper-arid conditions.
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Introduction

Arid and semi-arid areas cover up to 45% of the Earth’s land

surface (Bastin et al., 2017). Although desert habitats are poor in

water and nutrients, Acacia trees inhabit many deserts around the

globe (Maslin et al., 2003), such as the Sahara (Essendoubi et al.,

2007), the Arabian desert (Seleem et al., 2013) and the Negev desert

of Israel (Halevy and Orshan, 1972; Ross, 1981; Danin, 1983). In

these arid habitats, Acacias grow primarily in the main channels of

ephemeral streams (i.e. “wadis”) (Munzbergova and Ward, 2002;

Isaacson et al., 2017; Armoza-Zvuloni et al., 2022), tolerating

extreme conditions of high radiation, temperatures and vapor

pressure deficit (VPD), with infrequent and short rain events

(Goldreich and Karni, 2001; Uni et al., 2022). However, in this

dry wadi system, short but intense rain events create flash floods

(approximately twice a year) entailing rapid and high fluxes of water

that arrive fast and disappear fast (Dahan et al., 2007; Dayan et al.,

2021). The stream-beds of these wadis are composed mostly of

permeable, coarse alluvial sediments that promote rapid infiltration

of floodwater into deep soil layers, resulting in low availability of

water in the upper 5-7 m of the soil (Dahan et al., 2007; Winters

et al., 2015).

Soil water availability is a key factor in the growth and

development of trees (Klein et al., 2015; Reich et al., 2018), as it is

the buffer linking precipitation and tree water usage (Veihmeyer

and Hendrickson, 1950). Eckes-Shephard et al. (2021) studied the

direct response of tree growth to soil water (in the Swiss Alps) and

found in their model that 60% of tree ring widths were explained by

volumetric soil water content. The importance of soil water

availability is especially strong in semi-arid and arid

environments (Noy-Meir, 1973; Reynolds et al., 2004; Albrecht

et al., 2014), where the combination of low precipitation with dry

atmosphere results in a high water demand by the trees (Chaves

et al., 2003). An example of this can be seen in the semi-arid pine

forest in Israel (the southern edge of pine forests in the world),

where Klein et al. (2014) found that a reduction of only 5% in VWC

caused a reduction of 14-34% in tree growth.

In response to limited soil water content, trees are able to

partially control their water loss by regulating stomatal conductance

(Kirkham, 2014). Regulation of stomatal aperture is suggested to be

especially important in semi-arid and arid environments, mainly

during dry periods (Eamus and Prior, 2001; Klein et al., 2011; Klein

et al., 2014). However, unlike most studied dryland trees, desert

Acacias were found to show relatively low stomatal regulation

(closure) for the prevention of stomatal water loss (Do et al.,

2008; Winters et al., 2018). For example, Acacia tortilis in the

northern Sahel (one of the driest savannahs in the world) showed

consistent patterns of water loss throughout the year with stable

diurnal sap flow rates (29 ± 4.4 L per day), despite significant

seasonal fluctuations in the environmental conditions (Do et al.,

2008). Another example from A. tortilis trees in the hyper-arid

desert of Israel includes work by Winters et al. (2018) that showed

relatively low seasonal variability in the rate of diurnal sap flow

(12.5 ± 3 L per day) even though relative humidity ranged from 4-

94% throughout the year. Furthermore, in contrast to most studied
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desert trees, the highest CO2 assimilation and transpiration rates of

these same Acacias were surprisingly during midday in the summer,

when temperatures and VPD were at their maximum (Uni et al.,

2022). However, determining whether low soil water availability

takes part in stomatal regulation of Acacia trees is difficult when

based only on field observations since the trees in the field might

have deep and wide root systems (Ludwig et al., 2003; Do et al.,

2008; Sher et al., 2010) which can provide them with a constant

water supply throughout the dry season.

Controlled experiments conducted on Acacia seedlings also

suggest a surprisingly limited capacity to regulate water loss. For

example, in a controlled drought experiment, in which irrigation

was withheld, no differences in hydraulic conductance of water-

stressed and non-stressed trees were found (Otieno et al., 2005).

Cory et al. (2022) found that A. tortilis seedlings tend to take an

anisohydric ‘water-spender’ (i.e., “risk-taking”; (Sade et al., 2012))

strategy, particularly at moderate levels of drought. However, these

experiments were done with seeds collected from populations

adapted to much wetter environments (900-1000 mm year-1)

compared to populations that come from arid and hyper-arid

deserts (20-70 mm year-1) as described in this study (see below).

Information on the specific strategy that desert Acacias use in order

to survive and grow in arid and hyper-arid environments is still

missing, especially, on the response of canopy conductance

dynamics to low soil water availability.

In this study, we aim to answer the question- what are the

continuous physiological responses (canopy conductance and

biomass accumulation) of two dominant desert Acacias keystone

species to limited soil water availability? Moreover, we asked whether

these physiological responses facilitate their survival and establishment

during early life stages in a harsh desert environment. To shed light on

these questions, we tracked the whole-plant water-balance regulation

traits under well-watered and water-limited conditions in a continuous

and simultaneous experiment on an array of lysimeters (Halperin et al.,

2017; Dalal et al., 2020; Jaramillo Roman et al., 2021). By controlling the

soil water content, gradually reduced from 17% (full saturation) to 5%

(drought), while all other environmental conditions (light, temperature,

soil type, seedlings age, and root depth) were kept the same for all

plants, we were able to isolate the dynamics of stomatal conductance

and biomass gain response to a single parameter - soil water content.

This controlled experiment is a follow-up study to a two-year field

study on mature trees of the same species, growing natively under

hyper-arid conditions (Uni et al., 2022). Our findings point to a

surprising strategy applied by desert Acacias under low water

availability conditions.
Materials and methods

Plant species and treatments

Seeds of Acacia tortilis (Figure 1A) and A. raddiana (Figure 1B)

were collected from a wild population (10 trees, 5-20 m distance

among them) in the Arava valley at the Negev Desert of Israel

(Wadi Sheizaf, 30.721222’N, 35.268366’E; elevation -137 m a.s.l)
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during July 2019 and stored according to Israel’s Plant Gene Bank

protocols (https://igb.agri.gov.il/web/index.php). In December 2020

we chipped the hard seed-coat and germinated the seeds in agar

plates in an incubator (12:12 light:dark, 20°C), according to

protocols developed for Acacia species (Tran et al., 2018).

Germinating the seeds by clipping the seed’s seminal cortex

mimic animal herbivory or erosion in a flash flood, the most

common natural ways for Acacia seeds to germinate (Polak et al.,

2014). After germination, we transplanted the seedlings into small

pots (6.5 ×6.5×7.8 cm) and grew them in a controlled temperature

glass greenhouse (28˚C/22˚C day/night under natural light

conditions. All seedlings were given uniform optimal conditions

of full irrigation (4 drippers irrigating until pot saturation) with

addition of nutrients (poly feed N:P:K 17:10:27, Haifa Chemicals,

Haifa, Israel). Six months after the seedlings were sown, they were

transplanted into 4 L pots (20.0 × 15.5 × 16.5 cm) filled with

uniform grain size sand (0.6–1.0 mm) with one plant per pot, and

transferred to a semi-controlled experimental greenhouse (at the

iCORE Center for Functional Phenotyping, Rehovot, Israel) for the

rest of the experiment (https://plantscience.agri.huji.ac.il/icore-

center). This experimental platform enables researchers to

follow the physiological behavior of a large number of plants,

simultaneously, and with very high time resolution, in response

to a decrease in water availability. The water parameters measured

here are based on the pot weight, therefore, they represent

the actual water used by the plants, a parameter which is not

possible to measure in the field. This platform has gained

widespread use in numerous studies (Halperin et al., 2017; Fox
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et al., 2018; Dalal et al., 2020; Jaramillo Roman et al., 2021;

Houminer et al., 2022), including a specific correlation between

“classic” measurement of stomatal conductance (promoter and gas

analyzer) to the system measurements (R2 = 0.9914) (Jaramillo

Roman et al., 2021).
Lysimeters - experimental design and
data collection

The experiment was conducted in the summer between July and

September 2020 when annual radiation, temperature and VPD are

the highest (Figure 1D). It should be noted that the highest VPD

measured in the greenhouse was only 3kPa, which occurs in the

winter season in the Acacia’s natural habitat (Uni et al., 2022).

Therefore, the comparison with the conditions in the field is limited.

It also should be noted that reaching very high VPD in greenhouses

is almost impossible (Shamshiri et al., 2018). The pots with the

seedlings (16 per species, 8 per treatment, the total number of

seedlings=32) were placed on a weighing lysimeter system, one pot

per scale. The different pots were placed on the experimental table

in a randomized block design determined by a randomizing

software in order to minimize environmental and edge effects

(Dalal et al., 2020) (Figure 1C). Initial calibration for each weigh-

scale was performed at the beginning of the experiment on all

lysimeters under constant load weights (1 kg and 5 kg) using the

Plantarray auto-calibration application (Halperin et al., 2017; Dalal

et al., 2020).
FIGURE 1

Acacia tortilis (A) and A. raddiana (B) trees in their natural habitat (hyper-arid desert), seedlings of the same population growing in the greenhouse on
the lysimeters system (plant array - a high-throughput, multi-sensor physiological phenotyping gravimetric platform) (C). The abiotic conditions in
the greenhouse during the experiment (July-September 2020): daily maximum photosynthetic active radiation (PAR) and vapour-pressure deficit
(VPD) with the daily cycles of these parameters on a diurnal scale (representative days in insert) (D) alongside average soil volumetric water content
(%) in the drought pots, and plants transpiration rate in the two water treatments (dashed line for drought treatment, non-dashed line for control
treatment) (E).
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The set-up of the experiment was comprised of highly sensitive

weighing lysimeters, and each pot was weighed and its irrigation

controlled individually by a separate control unit, which also

collected continuous data. Fertilizer (poly feed N-P-K 5:10:27,

Haifa Chemicals, Haifa, Israel) was supplied to the plants through

the irrigation system (fertigation). The pots fit tightly in the system

containers, and the containers have several drainage holes at

different heights which enabled drainage of excess water

according to the irrigation regime. To prevent evaporation from

the soil surface of the pot, circular PVC covers were placed on the

surface of the pots, tightly surrounding the plant stem. For the full

irrigation treatment, fertigation was applied as 15 minute pulses

every 2 hours, throughout the night, allowing optimal water

dispersal and drainage in the pot, ensuring that we reach the

maximal pot capacity. VWC and atmospheric conditions

(temperature, radiation, VPD) were simultaneously monitored at

several locations around the experimental table as described in

Dalal et al. (2020).
Drought and recovery treatments

The continuous physiological experiment was designed to

monitor the response of Acacia seedlings to a declining soil water

content (SWC). The experiment was carried out for a total of 47

days. After an establishment period of 26 days during which the soil

of all pots was irrigated every day to full saturation (16.7% in our

sandy soils) the pots were divided into two groups - drought and

control. For the drought group only, irrigation was decreased

gradually for each individual pot until reaching a VWC of 5%

after 14 days which was considered extreme drought, based on soil

measurements at the summer period in the field (data not shown).

In order to ensure that all the drought treatment plants were

exposed to a uniform drought treatment, the deficit irrigation

regime that was applied to each pot, was based on the previous

day’s transpiration of that same pot, by the system’s feedback-

irrigation controller, which supplied each pot with only 20% of the

previous day’s transpiration demand (Dalal et al., 2020). The daily

transpiration rates and the VWC were closely monitored

throughout the drought treatment. After 14 days of drought

treatment when the plants’ transpiration rates were minimal, full

irrigation was restored for a recovery periord, simulating a

flashflood which brings high amounts of water to the wadis in the

desert (Figures 1D, E).
Measurements of plant physiological traits

The kinetics of plant-water-relations (recorded by the system

every 3 min.) and quantitative physiological traits of the plants were

determined simultaneously for all plants, following Halperin et al.

(2017) with minor modifications, and included the following

parameters: daily transpiration (gwater/day/plant), transpiration

rate (E, gwater/gplant/min), whole-canopy stomatal conductance,

divided by VPD (gsc, gwater/gplant/min)), and plant water-use

efficiency (daily biomass gain/daily transpiration). Daily biomass
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gain was calculated by the system each morning at 04:00 am, after

the end of irrigation and after full drainage was achieved (Halperin

et al., 2017) by subtracting the overall weight of the pot from the

weight measured on the previous day. The daily percentage of

growth was calculated by dividing daily biomass gain (g) by the final

plant weight at the end of the experiment minus the initial plant

weight. To avoid bias of calculating the growth rate we used the

relative growth rate (RGR) equation as described in Hoffmann and

Poorter (2002). The RGR equation is based on dry mass, while

the lysimeters system is measuring the fresh weight of the

seedlings, therefore we calculated also the fraction of dry mass

from fresh mass (%) at the last day of the experiment (average of

32%) and used it as a calibration value. VWC was measured directly

using soil sensors (Decagon, 5TE, USA). The point at which

transpiration rate began to be affected by limited soil water

availability was determined by the piecewise linear fit of the

transpiration rate and VWC of the plants subjected to the

drought treatment.
Osmolality measurement

From each treatment, leaves were sampled at three time points

(5 days before drought, at the peak of drought, and 4 days after the

start of recovering) and placed in 1.5 ml plastic tubes that were

immediately frozen in liquid nitrogen (n=5 for each treatment, at

each time point). The samples were stored in -80°C until extraction.

To extract the sap, the tubes were centrifuged for 3 min. at 13,000

RPM (Eppendorf 5424R, UK. The extracted sap was kept on ice

(max. 60 min.) until measured in a vapor pressure osmometer

(Vapro 5600; Wescor Inc., USA) and the mean of two technical

repetitions was taken as leaf osmolality (mmol kg−1).
Species distribution maps in the
ephemeral rivers

The stream system of any drainage basin can be quantitatively

expressed in terms of stream order; 1st order wadis are defined as

the smallest channel that flow toward 2nd order channels and so on

to the highest number of order, which drainage all the water in a

certain catchment area, the main channel. the small channels

(outside the main one) are characterized by fast water movement

toward the main channel (Horton, 1945; Lange, 2005). Thus, most

of the water (and sediments) accumulate in the main channel

(Levick et al., 2008; Stavi et al., 2015). Based on a standard

protocol to monitor Acacia trees in the Arava Desert (Groner

et al., 2017) plots of 1 hectare were defined in three wadis

(ephemeral rivers) (Stavi et al., 2015). In each plot we measured

and recorded the location (using GPS) and species identity of each

tree (A. raddiana or A. tortilis) and the relative location within the

wadi (wadi order). This information was used to create the

distribution maps in the wadi and calculate the relative

abundance of each of the species as the number of individuals of

each species from the total number of Acacia trees observed at each

monitored plot.
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Statistical analysis

Wemonitored the diurnal dynamics of the canopy conductance

in both species before and during drought, and after drought

recovery. These continuous data of the weight of each pot from

the lysimeter system were filtered and summarized using the SPAC

(Soil-Plant-Atmosphere-Continuum) analytic software embedded

in the Plantarraysystem (PlantDitech, Yavne, Israel). To test how

canopy conductance was influenced by low water availability we

tested the reaction of the canopy conductance values during noon

(10:00-14:00) to the gradual reduction in irrigation (2 species, 47

days, drought and control treatments, 5-7 replicates per treatment).

We also correlated daily growth and VWC of the pot to examine

differences between the control and drought treatments in both

species. All statistical analyses (ANOVA between four groups; two

species and two water treatments, or t-test comparing two species

under drought treatment only) were performed using the JMP®

15.0 Pro statistical package (SAS Institute, Cary, NC, USA) unless

otherwise specified. Box plots and continuous line graphs were

generated using R software and the interface R Studio (R

Development Core Team 2006, 1.2.5033 (R Core Team, 2013)).
Results

Overall water balance under drought

The Acacia seedlings in the greenhouse (Figure 1C) were

exposed to uniform conditions of light, temperature and air

humidity, entailing also similar VPDs (Figure 1D). It should be

noted that the conditions in the greenhouse were only semi-

controlled, thus dictated by the outside conditions with maximum

temperatures limited to 35 ˚C by the greenhouse cooling system. To

test the response of the Acacias to limited water availability under

the hottest conditions, we conducted the experiment during the

summer months at the highest temperatures of the year (which

ranged from 22- 33 ˚C in the greenhouse). The daily maximum

values of VPD in the greenhouse throughout the experiment ranged

from 2.5-3 kPa, and the average PAR light was 1100 µmol photons

m-2 s-1 (Figure 1D). At the time of extreme drought (after 14 days of

decreasing irrigation inputs), transpiration rate was lower in

drought-subjected plants (from both species) by 75% as compared

to the well-watered control plants (0.00052 gwater gplant
-1 min-1;

0.0019gwater gplant
-1 min-1, respectively, F1,46 = 1.67, p = 0.04)

(Figure 1E). Both species maintained approximately 25% of their

canopy conductance even at the very low VWC of 5%, enabling

photosynthetic activity under extreme drought conditions.

Although midday canopy conductance (gsc) of both Acacia

species was significantly reduced by the drought treatment as

compared to their well irrigated controls, A. tortilis maintained

higher gsc than A. raddiana at the peak of drought (VWC 5-9%)

(Average ± SE values of 0.05 ± 0.021, 0.02 ± 0.006 gwater gplant
-1 min-

1, respectively, F1,7 = 26.24, p = 0.002) (Figure 2A, yellow frame). In

addition, during the recovery phase, A. tortilis seedlings restored

more than 80% of their initial unstressed levels of gsc and

transpiration rate after only 5 days, while in A. raddiana gsc and
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transpiration rates were not fully restored for the remaining

duration of the experiment (Figures 2A, B).

Biomass gain for the seedlings at the end the experiment ranged

from 500 to 800 g (47 days), with no significant difference among the

control and the drought treated plants within each species (Figure 2C).

However, althoughA. tortiliswere initially smaller than A. raddiana at

the start of the experiments (Figure 2C), they gained 16% more

biomass than A. raddiana in both control and drought treatments.
Diurnal patterns of Acacia sp. under
different VWC

Wemonitored the diurnal dynamics of the canopy conductance

in both species before, during, and after drought (Figure 3). The

overall diurnal gsc patterns were similar in both species and were

not affected by drought. From first light, the gsc increased

throughout the morning reaching its first peak at ~9:00 am,

followed by a small reduction (due to a decline in VPD in the

greenhouse), and then stabilized at maximum rates for several

hours (between 11:00 and 15:00) followed by a reduction from

15:30 until dark. This general diurnal hourly trend was maintained

throughout the experiment, even under extreme drought

(Figure 3B) and throughout the recovery phase (Figure 3C) with

only amplitude changing. Under well-watered conditions preceding

the drought treatment, whole plant daily transpiration of the

seedlings of all four groups (species and treatments) ranged from

430 to 700 g of water per day with no significant differences among

the two species (Figure 3A). Reduction in water availability

(drought treatment) resulted in a decline of seedling transpiration

rates for both species compared to their controls (Figure 3B). The

transpiration rate for A. tortilis was reduced by 47% compared to its

control after 14 days of extreme drought, while for A. raddiana

under the same conditions, transpiration rate was reduced by 68%.

Upon recovery (Figure 3C), the gsc of A. tortilis plants was quickly

restored, reaching values of 82% of the control seedlings by the end

of the experiment, while gsc of A. raddiana reached only 70% of

original values even after 7 days of full irrigation.

To better understand the specific response of the two species to

the imposed drought, we analyzed how canopy conductance and

daily growth responded to the availability of water in the soil

(VWC) under the drought treatment (Figures 4A, B). For A.

raddiana a reduction in gsc was first apparent when VWC

reached 13.1%, while the gsc of A. tortilis began declining only at

VWC of 9.8% (Figure 4A), maintaining high gsc values for a longer

period under lower VWC values. This gap allowed A. tortilis

seedlings to gain more biomass (Figure 4B) under more extreme

water limitations, resulting in 2.2 times higher biomass gain

(growth) under low water availability (<10% VWC). The relative

growth rate (RGR) was significantly higher in A. tortilis

(RGR=0.025) compared to A. raddiana (RGR= 0.011) during the

drought period (14 days) (t15= -23.12, p < 0.001). In addition, the

slope of the relation between daily growth and VWC was

significantly (F1,12 = 6.28, p < 0.001) steeper in A. tortilis than in

A. raddiana (y = 94.539x - 1.147; y = 55.039x - 1.2294, respectively)

revealing that A. tortilis plants used the available water better for
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gaining biomass. Therefore, the water-use efficiency of A. tortilis

was significantly higher compared to A. raddiana (Figure 4C,

F1,9 = 25.61, p < 0.001). Moreover, to add a biochemical

perspective, we measured the change of leaf sap osmolality in
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drought vs. control plants at the peak of drought (Figure 4D).

Both species increased their osmolality during the drought period.

However, the difference between drought and control plants was

significantly larger in A. tortilis compared to A. raddiana
FIGURE 2

Midday canopy conductance (gwater gplant
-1 min-1) (A), transpiration (gwater gplant

-1 min-1) (B), and plant wet weight (g) (C) measured throughout the
experiment. Shown are averages (n=7-5) of Acacia tortilis and A. raddiana seedlings exposed to drought and control during the acclimation period
(23 days), followed by a 14 days of gradual drought exposure, followed by one week of recovery.
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(F3,18 = 13.65, p < 0.001). i.e. in A. tortilis osmolality increased from

524 to 628 mmol kg-1 (in control vs. drought, respectively) while in

A. raddiana osmolality increased from 544 to 591mmol kg-1 (in

control vs. drought, respectively; Figure S1).

In the first 24 hr after re-irrigation of the plants in the drought

treatment (simulating a high input of water typical of a flash flood

event), we observed a significant difference between the two species

in the ability to recover (Figure 5). A. tortilis seedlings transpired

double the water amounts than A. raddiana at the daily peak (11:30)

(0.06 ± 0.07, 0.03 ± 0.006 (gwater/gplant/min)), respectively).

To put these results in a wider context, we also examined the

distribution of the two species within the desertWadi ecosystem. Three

case studies from the hyper-arid desert in the Arava region showed that

the abundance of A. tortilis in the main channel (trees within the blue

frame in Figure 6) was low (33% of all trees in the main channel)

compared to A. raddiana (64% of all trees). In contrast, outside the

main channel (trees growing outside the blue frame) where less water

flows and accumulates in the soil (Horton, 1945; Levick et al., 2008)

there was a higher abundance of A. tortilis compared to A. raddiana

(88% and 11% of all trees, respectively) (Figure 6).
Discussion

Understanding Acacia water-use strategy

A key question in plant science is why some plants do better

than others in some environments, especially under drought. Here
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we performed an experiment in controlled conditions aiming to sort

out the complex and intertwined responses found in the field, in

order to understand the physiological response of Acacias to low

water availability. A continuous and simultaneous tracking of

whole-plant water-balance under different water availability

conditions revealed that both Acacia species continued

transpiring water even under low soil water availability (Figures 3,

4). Maintaining transpiration at low water availabilities is unique in

comparison to other plants, however, these values are in agreement

to plants from savannas and dry shrub land regions (Fu et al., 2022).

We also found that the canopy conductance of A. tortilis at the peak

of drought and while recovering from a drought period was higher

compared with A. raddiana (Figures 4, 5). Although Acacia trees

live in the most arid places on earth, with extremely low humidity

both in the air and in the soil, here we showed a unique and non-

trivial strategy of water use - a desert tree that keeps stomata open in

very dry soil conditions (Figure 3B). Moreover, the diurnal trend of

transpiration rate peaking around noontime remained the same

even when the seedlings were exposed to extreme drought

(Figure 3), similar to the pattern found in mature trees in the

field (Uni et al., 2022). Hence, the plants that were exposed to low

water availability did not stop growing (Figures 2, 4B). Since

stomatal closure is a key mechanism by which plants control

their water status and avoid the negative effects of drought, our

findings raise the question- why would a desert plant use such a

water-spending strategy? Below we present two explanations: (1)

the need for cooling the canopy and (2) the need to exploit all

available water under conditions of high uncertainty.
B CA

FIGURE 3

Diurnal pattern of canopy conductance (gsc) (A) before drought, (B) at the peak of drought, and (C) at the first day of recovery. Error bars represent
SE, boxplots represent the total daily transpiration of each group (n=5-7), first to third quantiles; the middle line represents the median. The values of
gsc are means of 7 days before drought, 3 days in the peak of drought and all the recovery period.
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The desert tree dilemma – cooling vs. high
water loss

In their natural habitats, Acacia trees cope with extremely high

temperatures that exceed 40˚C at midday, every day throughout the

summer, which lasts 4 months of the year (Goldreich and Karni,

2001; Winters et al., 2018). High temperatures of above 42°C cause

denaturation of proteins, decrease the rate of chemical reactions

and change the cell structural organization (Berry and Bjorkman,

1980). Opening of the stomata provides an evaporative cooling

effect, cooling down the leaves when water is transpired (Crawford

et al., 2012; Lapidot et al., 2019; Aparecido et al., 2020). However,

opening of the stomata while VPD is extremely high (e.g., > 3.5 kPa)

exposes the tree to the risk of excessive water loss (Chaves et al.,

2003), loss of turgor (Bartlett et al., 2016) and xylem embolism

(Wagner et al., 2022). Therefore, trees in hot desert environments

face a dilemma, to transpire water in order to cool down (Lapidot

et al., 2019), or to avoid high water loss by stomatal closure while

taking a risk of overheating (Berry and Bjorkman, 1980; Crawford

et al., 2012).
Frontiers in Plant Science 08
Measurements of Acacias’ canopy temperature (using thermal

infra-red camera) in their natural hyper arid-habitat showed that

mature trees cools via transpiration at the hottest hours (12:00)

(Uni et al., 2022). Our results here show an anisohydric ‘water-

spender’ strategy with a diurnal pattern of peak canopy

conductance at noon (Figure 3) when temperatures are at their

maximum, and we suggest, indirectly, that this ‘water- spender’

strategy might be a way to cope with high temperatures and survive

where other tree species cannot. Other tree species, from semi-arid

and Mediterranean forests, which cope with occasional high

temperatures (maximum 40 ˚C) and a long dry season (with

VPD of ~ 4 kPa), usually show a more water-conserving strategy,

minimizing their activity during the dry season (and often also

middays) to prevent water loss (Maseyk et al., 2008; Klein, 2014;

Rog et al., 2021). For example, in a mixed dry Mediterranean forest,

transpiration rates during summer were almost zero in Pinus

halepensis, Quercus calliprinos, and Cupressus sempervirens (Rog

et al., 2021). In addition, in a P. halepensis forest on the edge of the

semi-arid region, reduction in stomatal conductance was observed

with the seasonal increase in VPD (from 1 kPa to 4 kPa), resulting
B

C D

A

FIGURE 4

Comparisons of canopy conductance (A) and daily growth (B) responses to soil volumetric water content (VWC %) in A. tortilis (orange) and A.
raddiana (green) seedlings under drought treatment. Significant differences in whole plant water use efficiency (C) and the percentage of change
from control in leaf osmolality (D).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1154223
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Uni et al. 10.3389/fpls.2023.1154223
FIGURE 5

Recovery of A. tortilis (orange) and A. raddiana (green) in the first 24hr post 14 days of drought. Diurnal pattern of canopy conductance (n=5-7
average, SE error bars).
FIGURE 6

Orto-photos maps of tree species distribution in southern Arava, Israel. Shown are examples of different niche species distribution in three locations:
(A) Shahak wadi (30.780597, 35.273345), (B) southern Saif wadi (30.836261N,35.259801E); (C) west Saif wadi (30.849811, 35.254353). Pie charts
represent the abundance of A. tortilis (orange) and A. raddiana (green) in the main channel (in blue frame) and outside the main channel.
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in transpiration rates of < 1 mmol m-2 s-1 in the summer months

(Maseyk et al., 2008). Pine trees in this semi-arid region use

convection to cool down their foliage (Muller et al., 2021),

however this might be insufficient under higher temperature as in

the Acacias’ hyper-arid natural habitat. On the other hand, when

individual trees have higher water availability they can transpire

more both in semi-arid pines (Tsamir et al., 2019) and the desert

Acacias shown here. Moreover, in two similar controlled

experiments on the same continuous and simultaneous tracking

lysimeters system, P. halepensis seedlings showed a clear response to

drought, responding with their stomata at relatively high soil water

content of 39% leading to a reduction of the daily transpiration to a

minimum (Houminer et al., 2022). Another hypothesis to explain

the high stomata activity under drought might relate to the nitrogen

fixation ability of the trees. Acacias associate with dinitrogen fixing

rhizobia via root symbiosis (Sprent, 1995). Dinitrogen fixing

bacteria in the root system can be a large sink for carbon, in turn

increasing the demand for photosynthates, resulting in stomatal

opening even during severe stress.
Establishment of Acacia seedlings

We conducted our experiment on one-year-old Acacia

seedlings, as a follow up experiment to a study on mature Acacia

trees in their natural hyper-arid habitat (Uni et al., 2022). The

seedlings studied here represent the most crucial stage of the

establishment bottleneck, when seedling survival plays a critical

role in the distribution and structure of the population of trees

(Anderson et al., 2015; Morrison et al., 2019). A young Acacia

seedling in the desert must cope with a low water supply that comes

in high intensity, i.e., in pulses (flashfloods) together with a risk of

erosion of the riverbed (Stavi et al., 2015). Thus, the young seedling

has a short window of time to maximize carbon gain (growth) to

ensure survival. The key factor to ensure survival in the desert is the

ability to grow a long and wide root system that can reach deep

water reservoirs (Castillo et al., 2002; Stave et al., 2005; Do et al.,

2008; Sher et al., 2010; Winters et al., 2018) and creates mechanical

stability to flashfloods (Stavi et al., 2015). Therefore, we suggest that

the strategy of spending water in order to gain biomass helps the

seedlings to grow deep root systems, thus providing an advantage

for seedling survival and establishment in the desert. This is a “risk-

taking” strategy, especially in extremely dry conditions that expose

the Acacia seedlings to dehydration risk as they continue to

transpire (Figure 3B) and grow (Figure 4B). Our findings are in

accordance with Cory et al. (2022) that also describe an ‘an-

isohydric’ approach used by A. tortilis seedlings from wetter

environments (the Serengeti in Tanzania), indicating that this is

not a local adaptation to the hyper-arid conditions in the Arava.
Differential response to drought among
co-occurring A. raddiana and A. tortilis

A. tortilis seedlings grew more than A. raddiana seedlings under

low soil water content (Figure 4B) and exhibited a significantly
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higher water-use efficiency (biomass gain per water loss)

(Figure 4C). The differences that we found between the two

species in their physiological response to de- and re-hydrating

soil suggest that A. tortilis may be more efficient in environments

where the water pulses are more extreme (faster water movement,

lower water accumulation).

Within their geographical distribution in the desert ecosystem,

both species grow in ephemeral wadis (Zohary and Orshan, 1956;

Stavi et al., 2015; Isaacson et al., 2017; Armoza-Zvuloni et al., 2021),

however they differ in their preferential location within the wadi

system (Figure 6). The main channel drains all the water in a certain

catchment area, while outside the main channel wadis are

characterized by fast water movement (Horton, 1945; Lange,

2005). Our results, which tested only the effect of SWC on Acacia

canopy conductance and growth, may explain the observed

distribution differences between the two species (Figure 6).

A. raddiana, which showed a slower reaction to reduction and

addition of water and lower WUE (Figure 4C) was found to be

more abundant in the main channel, where there is larger amount

of water in the soil and less fluctuations in water availability

(Horton, 1945; Levick et al., 2008). On the other hand, A. tortilis

utilize a more opportunistic strategy of water use (Figures 2, 4A, 5),

and therefore has a significant advantage in growing outside

the main channel, where water pulses are fast and extreme

and accordingly, water availability in the soil is low and

fluctuates greatly.

Further support for the risk-taking strategy in A. tortilis can be

seen in the high increases of leaf osmolality in the drought treated

compared to the control plants. It is well known that higher leaf

osmolality is a biochemical adjustment to drought (Hsiao et al.,

1976; Blum, 2017). Higher osmolality can also result from lower

water content which increase the concentration of solutes in the

sap (Taiz and Zeiger, 2006). Here we cannot disentangle the

specific reason for the higher osmolality change in A. tortilis,

but considering the spatial distribution of the species and even

more so, the physiological response to drought (Figure 4), we

suggest that osmoregulation is the appropriate explanation. In

addition to the mechanisms discussed here, it should be noted

that there are other processes involved in response to drought

including increase in the concentration of abscisic acid, changes in

Ca2+ and reactive oxygen species, and changes in the hydraulic

conductance (Takahashi et al., 2020). There are also escape

mechanisms such as reducing leaf area(Basu et al., 2016);

however, the measurement of these responses were beyond the

scope of this study.

The current study provides new insights regarding Acacia

ecophysiology and their responses to low water availability. The

research was performed on seedlings, providing whole-plant water-

balance regulation under both wet and dry conditions in two species

of Acacia from extreme desert co-habiting populations. Our

findings provide a new understanding of how Acacia trees

regulate the diurnal and total changes in canopy conductance,

transpiration rates, and plant growth under extreme conditions.

As desert vegetation is usually considered to take more conservative,

risk-averse and desiccation-avoiding strategies, our results reveal a

unique and non-trivial risk-taking strategy that potentially ensures
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the establishment of seedlings, with differences between the species

that probably determine their distribution in the desert. Acacias

thrive under extremely hot and dry conditions, which are predicted

to be more prevalent in many places in the coming decades

(Vicente-Serrano et al., 2010; Pachauri et al., 2014), suggesting

these trees might survive future climate change and provide carbon

sinks in a warmer and drier world.
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SUPPLEMENTARY FIGURE 1

Leaf osmolality (mmol/kg) among the four groups of the experiment as

measured at the beginning of the experiment (23.7.20) (A), at the peak of
drought (31.8.20) (B) and at the recovery phase (6.9.20) (C). Significant higher
values of osmolality were measured in A. tortilis at the drought treatment.
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