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A B S T R A C T   

To address the challenge of predicting tomato yields in the field, we used whole-plant functional phenotyping to 
evaluate water relations under well-irrigated and drought conditions. The genotypes tested are known to exhibit 
variability in their yields in wet and dry fields. The examined lines included two lines with recessive mutations 
that affect carotenoid biosynthesis, zeta z2083 and tangerine t3406, both isogenic to the processing tomato variety 
M82. The two mutant lines were reciprocally grafted onto M82, and multiple physiological characteristics were 
measured continuously, before, during and after drought treatment in the greenhouse. A comparative analysis of 
greenhouse and field yields showed that the whole-canopy stomatal conductance (gsc) in the morning and cu-
mulative transpiration (CT) were strongly correlated with field measurements of total yield (TY: r2 = 0.9 and 
0.77, respectively) and plant vegetative weight (PW: r2 = 0.6 and 0.94, respectively). Furthermore, the minimum 
CT during drought and the rate of recovery when irrigation was resumed were both found to predict resilience.   

1. Introduction 

Water stress is the main factor limiting crop yields worldwide [1–3]. 
Despite intense research over the last decades, drought tolerance is still a 
major threat to plant growth and crop productivity [4]. The water 
balance-regulation mechanisms in plants are critical for stress responses, 
productivity, and resilience, as reviewed in [5]. This balance is 
controlled by combining two regulation mechanisms: leaf hydraulic 
conductance [6,7] and the transpiration [8,9]. Continuous measurement 
of the first one is still a challenge, but high-throughput functional 
physiological phenotyping (FPP) analysis can be used for the second one 
[5], which should be considered when selecting traits for crop 
improvement and predicting crop performance under certain environ-
mental conditions. Accurate yield prediction is important for national 
food security and global food production [10] and it also aids policy-
making. From the research and development perspective, yield predic-
tion tools would enable breeders to reduce the time and cost required to 
select the best parent lines and test new hybrids under different envi-
ronmental conditions [11,12]. Finally, reliable yield prediction would 

benefit the growers who are the end-users of newly developed, improved 
varieties, aiding their crop management and helping them to make wise 
economic decisions [13]. However, early growth-stage prediction of 
crop yields is a challenging task, in general, and is even more chal-
lenging under water stress. Several yield-prediction models have been 
developed, some of which consider yield as a function of genotype (G) 
and environment (E) and treat the interaction between the two (G × E) 
as a noise [14,15]. Some other models address G × E interactions using 
multiplicative models [16], factor analytic (FA) models and linear mixed 
models to cluster environments and genotypes and detect their in-
teractions [17–19]. A recently developed yield-prediction model, which 
is based on a deep neural network fed with weather and soil-condition 
data for 2247 sites and yield data for 2267 maize hybrids) was found 
to accurately predict yields [12]. The developers of that system 
concluded that environmental factors had a stronger effect on the crop 
yield than genotype did. Thus, early-season yield prediction may require 
a large amount of data from the soil-plant-atmosphere continuum 
(SPAC). Plant physiological traits that are most relevant to productivity 
and are very responsive to environmental conditions are expected to 
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serve as important yield predictors [5]. 
Recent advances in crop physiology show that under drought con-

ditions, quantitative physiological traits such as stomatal conductance 
[20], osmotic adjustment, accumulation and remobilization of stem 
reserves and photosynthetic efficiency are strongly correlated with yield 
[21–23]. Nevertheless, most of the available models do not include key 
plant physiological traits, such as gsc and photosynthesis, which 
contribute to crop productivity [24,25]. These traits are among the 
primary and most sensitive responses of the plant to the changing 
environment [26] and this dynamic behavior helps to optimize the 
plant’s response to changing environmental conditions and probably 
also helps to maximize yield. For example, the early morning peak in 
stomatal conductance is proposed as a ‘golden hour’ with the assump-
tion of high CO2 absorption while transpiration is low due to the rela-
tively low VPD [5]. 

Therefore, we hypothesized that having a set of high-resolution and 
continuous data for many key-physiological traits, measured under 
different environmental conditions at an early growth stage, could 
improve our ability to predict the yields of particular genotypes under 
field conditions. To profile physiological traits that reliably contribute to 
the yield-prediction model, we used two carotenoid biosynthesis mu-
tants, which affect abscisic acid in roots and revealed yield reduction 
compared with the isogenic control genotype M82 (see Materials and 
methods). 

2. Materials and methods 

2.1. Plant material and the grafting procedure 

Tomato cv. M82 seeds [27], the recessive mutant zeta z2083 (ZET) 
described in [28] and the tangerine t3406 (TAN) mutant described in [29, 
30] were used. The mutants were selected as they displayed stable yield 
reductions when compared to the M82. Moreover, the xanthophylls 
violaxanthin and neoxanthin are the precursors for the synthesis of 
xanthoxin, which is converted to ABA. ABA synthesis in roots has been 
shown to affect plant growth in various ways. Consequently, the ABA 
synthesis in roots is compromised. Therefore, as a way of increasing 
yield variation and evaluation for the relative contribution of root ABA 
to the phenotypes we measure, we made seven grafting combinations, 
four hetero grafting in which M82 was reciprocally grafted with ZET and 
TAN, and three self-grafts for each genotype. These mutant lines have 
mutations that affect two of the four enzymes reported to convert phy-
toene into phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), zeta 
isomerase (ZISO) and carotene isomerase (CRTISO; [31,32]. 

2.2. Open-field experiments 

The results presented here are from work that was done in two 
consecutive growing seasons, 2018 and 2019, at the Western Galilee 
Experimental Station in Akko, Israel. In those trials, we used a low 
planting density of one plant per m2. In 2018, the experiment involved 
individual plants in a completely randomized design in blocks, with a 
minimum of 15 replicates per block. In 2019, the experiment was con-
ducted in plots of 10 plants per 5 m2, arranged in a randomized block 
design. The seedlings were grown at a commercial nursery (Hishtil, 
Ashkelon, Israel) for 35 days and then transplanted into the field at the 
beginning of April; wet and dry trials were conducted. Both wet and dry 
fields started the growing season at field capacity, which represents the 
maximum amount of water that the soil could hold. In the wet treat-
ment, 320 m3 of water was applied per 1000 m2 of field throughout the 
growing season, according to the irrigation protocols commonly used in 
the area. In the limited-irrigation (drought) treatment, we reduced 
irrigation 3 weeks after planting, so only 30 m3 of water was applied per 
1000 m2 of field. There was no rain during the experimental period, so 
the drought scenario was managed entirely via irrigation. 

2.3. Measurements of yield and yield components 

The experiments were harvested when nearly 100 % ripened. Plant 
vegetative weight (PW, g m− 2) was determined by weighing only the 
vegetative tissue (after harvesting the fruits) without the roots. Total 
fruit yield (TY, g m− 2) per plant or plot included both the red and a few 
green fruits. Mean of 20 red fruits (FW) was estimated from a random 
sample of 20 fruits per plant or plot. The concentration of total soluble 
solids (Brix %) was measured using a digital refractometer and a random 
sample of 10 fruits per plant or 20 fruits per plot. The sugar output per 
plant or plot was calculated as the product of Brix and TY. 

2.4. Pigment extraction and analysis 

Fresh samples of root and flower tissues (50–100 mg) were harvested 
and immediately frozen in liquid nitrogen. Carotenoids were extracted 
and quantified according to protocols described by [33]. 

2.5. Greenhouse experiment using the physiological-phenotyping platform 

A greenhouse experiment was conducted in parallel with a field 
experiment from mid-April to mid-May in 2018. The grafted and well- 
established seedlings were transplanted into 4-L pots filled with 
potting soil (Bental 11, Tuff Marom Golan, Israel). Plants were grown 
under semi-controlled greenhouse conditions with naturally fluctuating 
light (see Fig. 1A). Whole-plant, continuous physiological measurements 
were taken using a high-throughput, telemetric, gravimetric-based 
phenotyping system (Plantarry 3.0 system; Plant-DiTech, Israel) in the 
greenhouse of the I-CORE Center for Functional Phenotyping (http 
://departments.agri.huji.ac.il/plantscience/icore.phpon), as described 
in [34]. 

The set-up included 72 highly sensitive, temperature-compensated 
load cells, which were used as weighing lysimeters. Each unit was 
connected to its own controller, which collected data and controlled the 
irrigation to each plant separately. A pot containing a single plant was 
placed on each load cell. (For more details, see the “Experimental set- 
up” section.) The data were analyzed using SPAC-analytics (Plant- 
Ditech), a web-based software program that allowed us to view and 
analyze the real-time data collected from the Plantarray system. 

2.6. Experimental set-up 

The experimental set-up was generally similar to that described by 
[34], with some modifications. Briefly, before the start of the experi-
ment, all load-cell units were calibrated for accuracy and drift level 
under constant load weights (1 kg and 5 kg). Each pot was placed into a 
Plantarray plastic drainage container on a lysimeter. The containers fit 
the pot size, to enable the accurate return to pot capacity after irrigation 
and to prevent evaporation. The container had orifices on its side walls 
that were located at different heights, to allow for different water levels 
after the drainage of excess water following irrigation. Evaporation from 
the soil surface was prevented by a cover with a circle cut out at its 
center through which the plant grew. 

Each pot was irrigated with a multi-outlet dripper assembly that was 
pushed into the soil to ensure that the medium in the pot was uniformly 
wetted at the end of the free-drainage period following each irrigation 
event. Irrigation events were programmed to take place during the night 
in three consecutive pulses (see inset in Fig. 1B). The amount of water 
left in the drainage containers underneath the pots at the end of the 
irrigation events was intended to provide water to the well-irrigated 
plants beyond the water volume at pot capacity. The associated mono-
tonic weight loss over the course of the daytime hours was essential for 
the calculation of the different physiological traits using the data- 
analysis algorithms (see inset in Fig. 1B). 
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2.6.1. Drought treatment 
As each individual plant has a unique transpiration rate based on its 

genetic characteristics and location in the greenhouse, stopping the 
irrigation of all plants at once would lead to non-homogeneous drought 
conditions. To enable a standard drought treatment (i.e., similar drying 
rate for all pots), drought scenarios were automatically controlled via 
the system’s feedback-irrigation controller, in which each plant was 
subjected to a constant reduction in soil water content based on its daily 
water loss 

2.7. Measurement of quantitative physiological traits 

The following water-relations kinetics and quantitative physiological 
traits of the plants were determined simultaneously, following protocols 
and equations [1] implemented in the SPAC-analytics software for daily 
transpiration, transpiration rate, normalized transpiration (E) and WUE. 
Cumulative transpiration (CT) was calculated as the sum of daily tran-
spiration for all 29 days of the experiment for each plant. The other 
physiological traits used in this experiment are described in [35]. The 
estimated plant weight at the beginning of the experiment was calcu-
lated as the difference between the total system weight and the sum of 
the tare weight of the pot + the drainage container, the weight of the soil 
at pot capacity and the weight of the water in the drainage container at 
the end of the free drainage. The plant weight at the end of a growth 
period (calculated plant weight) was calculated as the sum of the initial 
plant weight and the product of the multiplication of the cumulative 
transpiration during the period by the WUE. The latter, determined as 
the ratio between the daily weight gain and the transpiration during that 
day, was calculated automatically each day by the SPAC-analytics 
software. The plant’s recovery from drought was described by the rate 
at which the plant gained weight following the resumption of irrigation 
(recovery stage). 

2.8. Data presentation and statistical analysis 

We used the JMP® ver. 14 statistical packages (SAS Institute, Cary, 
NC, USA) for our statistical analyses. Levene’s test was used to examine 
the homogeneity of variance among the treatments. Differences between 
the genotypes were examined using Tukey HSD. Each analysis involved 
a set significance level of P < 0.05. 

Pairwise Pearson correlations between traits under greenhouse 
conditions and the yield and its components measured in the open field 
(i.e., plant vegetative weight, red yield, green yield, Brix yield and total 
yield) were calculated using the genotype’s mean performance. 

3. Results 

3.1. Field-based plant weight and total yield 

The yield components plant vegetative weight (PW), total yield (TY), 
and green yield (GY) were tested under well-irrigated and dry conditions 
in the 2018 and 2019 growing seasons. Comparing two key traits TY and 
PW we found similar performances of the genotypes across years in 2018 
and 2019. 

3.1.1. Plant vegetative weight (PW) 
In the well-irrigated field, the M82 self-grafted plants (M82_scion/ 

M82_rootstock) had a significantly higher PW than the TAN/TAN and 
ZET/ZET plants. Under the dry condition, no significant difference was 
observed between the M82 and TAN self-grafted plants, whereas the 
plant vegetative weights of the ZET/ZET plants were significantly lower 
(Fig. 2A, B) under both well-irrigated and dry conditions. 

3.1.2. Total yield (TY) 
Under well-irrigated conditions, the TY of the different self-grafted 

M82 was significantly different from both mutants across both years. 
The total yield of M82/M82 was significantly higher than the yields of 
the other self-grafted plants, TAN/TAN was a medium yielder and ZET/ 
ZET had the lowest yield of all the self-grafted plants across both years. 
Under the drought condition, the total yield of M82/M82 remained 
higher than those of the other two genotypes, which were not different 
from each other (Fig. 2C and D, respectively). However, the TY under 
the drought condition was less than half of that observed under the well- 
irrigated condition. To increase the phenotypic variation in yield, we 
used a reciprocal-grafting approach, in which seven combinations of the 
three tomato cultivars resulted in different gradients of yield perfor-
mance under wet and dry conditions (Fig. 2C and D, respectively). TY 
increased more than 2-fold when TAN and ZET scions were grafted onto 
M82 rootstock, especially under dry conditions. 

3.2. Early-stage physiological traits measured in the greenhouse 

To identify physiological traits of young tomato plants that might 
serve as good predictors of yield in the field, we profiled multiple 
physiological traits using continuous data collected on a minute time- 
scale, such as whole-canopy stomatal conductance (gsc); continuous 
data collected on a daily time-scale, such as transpiration throughout the 
experimental period as a cumulative transpiration (CT); and single-point 
measurements such as growth rate and plant net weight (see Table 1). 

The continuous measurement data show that the traits varied with 
the environment. For example, as shown in Fig. 3, the whole-canopy 
conductance measured every 3 min for the whole day fluctuated over 

Fig. 1. Atmospheric conditions and experimental 
progress are represented as the fluctuations in pot 
weight over the course of the experiment in the green-
house. (A) Daily vapor pressure deficit (VPD) and 
photosynthetically active radiation (PAR) during the 29 
consecutive days of the experiment. (B) Continuous 
weight measurements of all the plants during the 29 
days of the experiment. Each line represents one plant/ 
pot. The decreasing slope of the lines during the day 
indicates that the system lost weight as the plants 
transpired. The three sharp peaks during the nighttime 
show system weight gain during irrigation events.   
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the course of the day in response to the environment. To better under-
stand this trait, we divided the day into three periods: morning, midday, 
and late afternoon time period. We found that stomatal conductance was 

relatively high at morning time (Fig. 3, marked in green), declined be-
tween midday and late afternoon to some point, and then increased 
again during the late afternoon. We also performed a correlation 

Fig. 2. Plant weight and total yield among 
three reciprocal-grafted tomatoes grown in the 
field. Boxplot showing the differences in (A) 
fresh weights of self-grafted and reciprocal- 
graft plants under the well-irrigated condition 
and (B) fresh weights of self-grafted and 
reciprocal-graft plants under the limited- 
irrigation condition. (C) Total fruit yield self 
and reciprocal-graft plants under the well- 
irrigated condition and (D) Total fruit yield of 
self and reciprocal-graft plants under the 
limited-irrigation condition. Data from 2018 
are indicated in grey (with small letters) and 
data from the 2019 experiments are indicated 
in red (with capital letters). Different letters 
indicate significantly different means, accord-
ing to Tukey’s Honest Significant Difference 
test (p < 0.05). Box edges represent the upper 
and lower quantile with the median value 
shown as a bold line and mean as a small square 
in the middle of the box. Whiskers represent 1.5 
times the quantile of the data. (For interpreta-
tion of the references to colour in the Figure, 
the reader is referred to the web version of this 
article).   

Table 1 
Correlations between the physiological traits of young tomato plants in the greenhouse and their field-based yield and biomass under well-irrigated conditions; means 
of each genotype were used for the correlation. The greenhouse measurements were categorized as continuous (i.e., whole-canopy stomatal conductance, gsc,), cu-
mulative or single-point measurements. gsc at the three-time periods (morning, midday, and late afternoon) is obtained by averaging the 3 min measurement during 
each time. All measurements were taken 1 week before the stress treatment started. r2 and p-values indicate the range of weak to strong correlations.   

Field-Based Measurements  

Total Yield Plant fresh weight  

R2 range p-Value ranges R2 range p-Value range 

Greenhouse-Based Measurements 

Continuous 
gsc (7:00− 10:00) 0.55 to 0.90 0.19 to 0.004 0.2 to 0.60 0.62 to 0.14 
gsc (10:00− 13:00) 0.45 to 0.72 0.304 to 0.067 0.44 to 0.89 0.32 to 0.006 
gsc (13:00− 16:00) 0.34 to 0.71 0.447 to 0.073 0.74 to 0.93 0.054 to 0.002 

Single point 
Cumulative transpiration 0.77 0.04 0.94 0.001 
Growth rate 0.62 0.12 0.89 0.0065 
Plant net weight 0.70 0.076 0.79 0.038  

Fig. 3. The Daily pattern of whole-canopy stomatal conductance (gsc(gwater-1gplant-1 min) presented as an example of continuous whole-plant physiological mea-
surement. Well-irrigated M82 tomato plants were used. The line is an average of three days. Data are shown as means (± SE, n = 10). 
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analysis using the average value of morning (7:00 -10:00), (midday, 
10:00-13:00) and late afternoon (13:00-17:00) measurement and 
correlated it with field-based yield and biomass data. 

3.3. Correlation of greenhouse physiological traits with yield and yield 
components in the field 

Data from the functional-phenotyping system were composed of 
continuous soil-plant-atmosphere measurements, with each data point 
representing the trait at a certain time point. In contrast, field data are 
normally composed of a single-point measurement that represents the 
plant’s absolute performance throughout the season (e.g., total fruit 
yield or plant vegetative weight). When we compared time-series, cu-
mulative and single-point physiological traits (measured traits) of young 
tomato plants with their field-based yield-related traits (TY, PW, RF, GF 
and Brix,), we found only a few traits that were highly correlated with 
each other (Table 1), out of about 95 bivariate combinations (see Fig. 4, 
Supplementary Figs. S3 and S4). Here, we present a few physiological 
traits for which the greenhouse data was strongly correlated with the 
field data and for which we observed low p-values (e.g., the highly 
correlated traits in Table 1). 

Time-series data are highly dynamic because of the plant’s contin-
uous response to environmental changes (e.g., stomatal conductance, 
Fig. 3; transpiration rate). Therefore, some data points were strongly 
correlated with yield (e.g., gsc in the morning, Table 1) while others 
were weakly correlated with yield (e.g., gsc at midday; Table 1). Looking 
at cumulative physiological data or single-point traits, both presented as 
a single value (e.g., CT, growth rate, plant net weight), eliminated the 
need to select a specific time point and revealed highly significant and 
positive correlations between CT and yield and most of the yield com-
ponents under well-irrigated conditions (Fig. 4A‒D). Similarly, the CT 
of drought-treated plants after recovery in the greenhouse was positively 
correlated with yield and with most yield components, but poorly 
correlated with green yield (Fig. 4C). A similar positive correlation be-
tween CT and yield in the field was observed in 2019 (Supplementary 
Figs. S5 and S6). 

3.4. Cumulative transpiration as an indicator of resilience and yield 
performance 

The rate of plants’ recovery from drought stress (i.e., drought resil-
ience) is an important trait. To evaluate this resilience, we measured the 
CT for the first week after recovery from drought. We then compared 
that CT data with CT data from two other periods during the experiment: 
the pre-drought period and the drought period (Fig. 5A). While the CT 

over the pre-drought treatment showed a similar positive correlation 
with that of the entire well-irrigated experiment (Fig. 5B), we found a 
strong negative correlation between total yield and CT and under 
drought conditions (Fig. 5C). We also observed a strong positive corre-
lation between CT and TY during the recovery period (Fig. 5D), even 
though the actual total yield of the drought-treated plants was half of the 
plants grown under the well-irrigated condition. 

4. Discussion 

Physiological traits (e.g., photosynthesis or stomatal conductance) 
are key contributors to plant productivity and yield [36,37]. However, 
existing methods of measuring these traits are mostly manual and thus 
are limited to a single point on a single leaf at a time [38]. As these 
physiological traits are very sensitive to ambient conditions, especially 
light and vapor pressure deficit (VPD); [5], conventional manual mea-
surements fail to capture the temporal and spatial dynamic interactions 
between the genotype and the environment. This could be misleading 
for yield prediction, as plants respond differently to dynamic growing 
conditions [5]. Hence, the integration of manual physiological mea-
surements into breeding programs is limited, most likely due to their 
low-throughput nature and the large degree of variation within and 
between temporal and spatial measurements. 

In this study, we used continuous measurements of physiological 
traits to assess whether those traits could serve as early predictors of 
plant responses to environmental conditions. We used a high- 
throughput, physiological phenotyping platform, with a high resolu-
tion of 3-min intervals, to capture plant responses to the environment. In 
our experiments, we captured a detailed profile of each plant’s perfor-
mance. Yet, another challenge was to leverage the daily dynamic re-
sponses of plants from these detailed profiles in order to understand 
their importance in the actual field condition (e.g., choosing the mea-
surement points to be used). A good example of this challenge is 
demonstrated in Fig. 3, which shows how continuous gsc measurements 
were correlated with yield performance at different hours of the day 
(Table 1). Using data from different time periods of the day, we show 
that the morning gsc peak is strongly correlated with TY and PW in the 
field. In agreement with our results, a recent study reported high sto-
matal conductance and photosynthesis in rice in the early morning [39]. 
The early morning peak has been reported on several plants [8,40] was 
referred to as a "golden hour" [5], due to relatively low VPD and good 
light for photosynthesis at this time. In fact, these conditions are 
allowing the plant to maintain high productivity with low water loss, 
thereby achieving optimal WUE. As such, we suggest that as soon as the 
plant reaches this point and as high as its gsc is at this point, it will be 

Fig. 4. Correlations between yield, its compo-
nents and cumulative transpiration of different 
tomato genotypes. (A) Plant vegetative weight 
in the field, (B) total fruit yield, (C) green yield 
and (D) red yield. Measurements taken at har-
vest time were correlated with the CT 
throughout the 29 days of the greenhouse 
experiment. Symbols are the means ± SE of 
traits for each genotype under the limited- 
irrigation condition (circles) and the well- 
irrigated condition (square box). Vertical SE 
(n = 12‒15), Horizontal SE (n = 8‒10). (For 
interpretation of the references to colour in the 
Figure, the reader is referred to the web version 
of this article).   
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more beneficial to the plant in general and in particular under stress. 
However, a clear understanding of the optimal stomatal conductance 
kinetics throughout the day and during the entire growing season as it 
reacts to dynamically changing environmental conditions is still a 
challenge. Several models have been proposed to understand the ki-
netics of stomatal conductance at leaf level [41–43] and quite a few at 
the whole plant level [44]. Although these models are good tools in 
predicting the kinetics of stomatal response to environment, still it is not 
easy to leverage the predicted or directly measured small dynamic re-
sponses on hourly, daily, and seasonal bases and translate it to final 
yield. Moreover, the fact that our midday gsc data was less strongly 
correlated with field performance is in agreement with the common 
practice of measuring gsc between 10:00 and 14:00 [45,46]. The weak 
correlation between midday gsc and yield could be related to the dy-
namic patterns of daily whole-plant water-use efficiency suggested by 
[5]. Nevertheless, the identification of the best time to measure each 
trait and/or weather condition understanding the cumulative effect 
hourly, daily seasonal changes in stomatal conductance on plant per-
formance and dynamic water use might require the use of new 
data-analysis tools, potentially a data-hungry machine learning algo-
rithms [47], to create a more comprehensive understanding of our large 
amount of data. However, the application of machine learning in plant 
science is still in its infancy [47]. Moreover, a better understanding of 
the genetic mechanism governing the morning peak could contribute to 
the improvement of crop productivity through breeding, in addition to 
yield prediction, as plants use water very efficiently at that time of day. 
It is also important to examine many genotypes. For example, the tomato 
introgression line (IL) population [27] with multiple years of field data, 
to verify whether these morning peaks are present in all genotypes, since 
the current study used only isogenic lines. This would improve our un-
derstanding of the genetic mechanism for this important trait. 

The relationship between transpiration and net carbon assimilation 
or dry weight has been well studied [48,49]. The reason for this corre-
lation is most likely due to the fact that CO2 enters via the same open 
stomata through which the plant transpires. Indeed, we found a positive 
correlation between CT and yield. Yet, this correlation was weaker than 
the correlation between morning gsc and TY (r2 = 0.9 versus r2 = 0.77 
and p = 0.004 versus p = 0.04, respectively), suggesting that the cor-
relation between CT and CO2 absorption might be affected by other 

environmental factors, such as VPD, radiation and humidity, which are 
all known to affect stomatal conductance [50]. On the other hand, CT is 
a stable, single-point measurement that is relatively simple to measure, 
yet it integrates the overall responses of plants to the environment 
throughout the experimental period. Nevertheless, these correlations 
should be examined in other plant species, as different vegetative stages, 
reproductive systems, growth, and development patterns may involve 
different yield-related predictive traits. 

Another goal of this study was to evaluate stress-related traits that 
could predict yield. Under water-deficient conditions, the plant un-
dergoes several changes ranging from molecular and cellular changes to 
changes at the whole-plant level. This reprogramming of metabolic 
pathways and physiological response patterns enables the plant to better 
cope with drought stress [51,52]. Many of the physiological responses to 
stress [e.g., reduced stomatal conductance, damage to the photosyn-
thetic parts, reduced chlorophyll content [53]; have dramatic effects on 
plant productivity. Under stressful conditions, plants enter a protective 
or survival mode [52] at the expense of their productive mode [54]. 
Here, we found that CT was strongly and positively correlated with TY 
under well-irrigated conditions, but negatively correlated with yield 
under stressful conditions (Fig. 5C). This reversal reflects the 
productive-survival transition mode of the plant [54]. Namely, a plant 
that can maximize its transpiration under well-irrigated conditions and 
swiftly minimize it under stressful conditions is more likely to produce 
more yield by the end of the season if it recovers quickly after the stress 
ends. This is clearly shown in Fig. 5B: M82/M82 and TAN/M82 had 
higher levels of transpiration pre-stress, but swiftly reduced their tran-
spiration during the stress period (Fig. 5C) and went back to their high 
levels of transpiration after recovery (Fig. 5D), which might have led 
them to have higher yields than the other lines. Thus, this transition 
mode is important for distinguishing plants’ stress-response (protective) 
mode from their normal growth response (productive mode). An addi-
tional important phase of the plant-stress response is the plant’s 
post-stress performance, often called resilience. 

Resilience to water limitations, specifically the plant’s ability to 
resume growth and gain yield after water resumption following drought 
stress, was acknowledged by [55]. Resilience is considered to be a key 
trait for crop improvement for water stress [56]. Although it has not 
received much attention for some time [57], this trait has been 

Fig. 5. The differential contribution of transpiration periods to yield prediction. (A) Mean ± SE. Daily transpiration was continuously measured during the whole 
experimental period for all genotypes. We examined the relative contributions of the three phases for yield prediction: well-irrigated (green box), drought treatment 
(orange), and recovery from drought (light green). CT was measured and correlated with TY for each period: (B) pre-treatment, (C) drought period and (D) recovery 
period. Vertical SE (n = 12‒15) field-based data; horizontal SE (n = 8‒10) greenhouse-based data. (For interpretation of the references to colour in the Figure, the 
reader is referred to the web version of this article). 
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prioritized in some breeding programs [58]. In this study, we found that 
the CT of all the treatment periods together (pre-treatment, drought and 
the recovery period) and the CT of only the recovery period each had a 
strong, positive relationship with TY (Figs. 4B, 5 D), suggesting the 
importance of this trait for stress-response profiling. 

Though the lines TAN and ZET were selected for this study due to 
their well-characterized yield data, we would like to discuss the 
contribution of the specific carotenoid mutations to stress response. 
Carotenoid biosynthesis in roots serve mainly the supply for the abscisic 
acid (ABA) and strigolactones precursors, β-carotene and violaxanthin, 
respectively. The mutation tangerine (TAN) in the gene Crtiso and Zeta 
(ZET) in the gene Ziso impair carotene isomerase and ζ-carotene isom-
erase, respectively. Mutations in these enzymes block carotenoid 
biosynthesis in their respective states and eliminate downstream xan-
thophylls in roots (Fig. S2). The accumulation of carotenoid in-
termediates in roots of TAN and ZET indicates that carotenoid 
biosynthesis does take place in roots. The low concentration of carot-
enoids in wild-type roots can be explained, in part, by the synthesis of 
ABA and strigolactones in the tomato roots, as reviewed in [39]. ABA 
deficient in roots in mutants TAN and ZET is expected to affect the 
ability of these plants to cope with drought and other stresses. Our re-
sults show that ZET and TAN are prone to slow recovery rates (Fig. 5A, 
D), in terms of cumulative and daily transpiration, which probably 
contributes to their low yields. Their lower CT levels may be related to 
their root systems, since both ZET and TAN grafted as scions on M82 
performed a lot better than ZET and TAN when M82 was used as the 
scion. In these mutants, carotenoid synthesis is blocked, so intermediate 
products accumulate. This blockage is very effective in the roots due to 
their lack of exposure to light, whereas exposure to light in the leaves 
partially compensates for the lack of carotenoid isomerase CRTISO and 
ZISO [59,60]. However, this cannot explain the lower yields of ZET and 
TAN under the well-irrigated condition. The relatively low yield of TAN 
plants under the well-irrigated condition might be linked to the lower 
concentrations of carotenoids, such as violaxanthin and neoxanthin, in 
their flowers, as compared to M82 (Supplemental Fig. S2). Violaxanthin 
and neoxanthin are the precursors for ABA synthesis [61], which sug-
gests that ABA might have been involved in reducing the yields of these 
mutants. However, this hypothesis needs to be tested in future research. 

5. Conclusions 

In conclusion, continuous measurements of dynamic traits such as gsc 
provide a dataset that is rich, yet also very challenging to analyze. In our 
current study, we confirmed that early morning gsc is an important 
physiological trait that can predict yield performance. Understanding 
the genetic mechanism underlying early-morning gsc could be a poten-
tial avenue for breeding programs aimed at developing lines that will 
perform well under water-deficit conditions. Furthermore, future data- 
science tools are likely to improve our understanding of the mecha-
nisms involved and allow us to use these dynamic traits in yield- 
prediction models. On the other hand, the relatively simple trait of CT 
of young tomato was proven to be a good predictor of plant biomass and 
yield performance. The inclusion of CT in yield models is expected to 
improve the accuracy and consistency of those models, which should 
facilitate the selection of complex traits for water-stress conditions. 

It is important to note that various crops may present different 
response profiles, as well as different levels of susceptibility to a 
particular type of stress, depending on their biochemical, physiological 
and phenological stage. 

In addition to yield prediction and crop improvement (i.e., at pre- 
breeding stages), high-resolution, continuous physiological data could 
further be exploited to help bridge the genotype-phenotype gap, by 
combining the functional-genomics approach with a high-resolution 
time axis on a QTL map. This combined approach may help to identify 
time-dependent QTLs for dynamic physiological traits such as gsc and 
help us to understand the genetic mechanisms that underlie those 

dynamic traits if tested for other crops, since our current work focused 
only on tomato plants. 
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